${\left( {{x^2} + \frac{a}{x}} \right)^5}$ के प्रसार में $x$ का गुणांक है
$9{a^2}$
$10{a^3}$
$10{a^2}$
$10a$
यदि ${\left( {a{x^2} + \frac{1}{{bx}}} \right)^{11}}$ में ${x^7}$ का गुणांक, ${\left( {ax - \frac{1}{{b{x^2}}}} \right)^{11}}$ में ${x^{ - 7}}$ के गुणांक के समान हो, तब $ab =$
निम्नलिखित के प्रसार में व्यापक पद लिखिए
$(x-2 y)^{12}$ के प्रसार में चौथा पद ज्ञात कीजिए।
${(a + b)^n}$ के विस्तार में चतुर्थ पद $56$ हो, तो $n$ का मान होगा
यदि $\left( x +\sqrt{ x ^{2}-1}\right)^{6}+\left( x -\sqrt{ x ^{2}-1}\right)^{6}$ के प्रसार में $x ^{4}$ तथा $x ^{2}$ के गुणांक क्रमशः $\alpha$ तथा $\beta$ हैं, तो
${(1 + x)^{43}}$ के विस्तार में $(2r + 1)$ वें पद और $(r + 2)$ वें पद के गुणांक बराबर हैं, तब $r$ का मान होगा