Find the value of $\tan \frac{\pi}{8}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $x=\frac{\pi}{8} .$ Then $2 x=\frac{\pi}{4}$

Now $\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$

or $\tan \frac{\pi}{4}=\frac{2 \tan \frac{\pi}{8}}{1-\tan ^{2} \frac{\pi}{8}}$

Let $y=\tan \frac{\pi}{8} .$ Then $1=\frac{2 y}{1-y^{2}}$

or    $y^{2}+2 y-1=0$

Therefore     $y=\frac{-2 \pm 2 \sqrt{2}}{2}=-1 \pm \sqrt{2}$

since $\frac{\pi}{8}$ lies in the first quadrant, $y=\tan \frac{\pi}{8}$ is positve. Hence

$\tan \frac{\pi}{8}=\sqrt{2}-1$

Similar Questions

The number of values of $x$ in the interval $[0, 5\pi]$ satisfying the equation $3sin^2x\, \,-\,\, 7sinx + 2 = 0$ is

If $\cos 2\theta = (\sqrt 2 + 1)\,\,\left( {\cos \theta - \frac{1}{{\sqrt 2 }}} \right)$, then the value of $\theta $ is

If $1 + \sin x + {\sin ^2}x + .....$ to $\infty = 4 + 2\sqrt 3 ,\,0 < x < \pi ,$ then

If $\cos \,\alpha  + \cos \,\beta  = \frac{3}{2}$ and $\sin \,\alpha  + \sin \,\beta  = \frac{1}{2}$ and $\theta $ is the the arithmetic mean of $\alpha $ and $\beta $ , then $\sin \,2\theta  + \cos \,2\theta $ is equal to 

  • [JEE MAIN 2015]

If $\sin 2\theta = \cos 3\theta $ and $\theta $ is an acute angle, then $\sin \theta $ is equal to