Find the value of $\tan \frac{\pi}{8}$
Let $x=\frac{\pi}{8} .$ Then $2 x=\frac{\pi}{4}$
Now $\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$
or $\tan \frac{\pi}{4}=\frac{2 \tan \frac{\pi}{8}}{1-\tan ^{2} \frac{\pi}{8}}$
Let $y=\tan \frac{\pi}{8} .$ Then $1=\frac{2 y}{1-y^{2}}$
or $y^{2}+2 y-1=0$
Therefore $y=\frac{-2 \pm 2 \sqrt{2}}{2}=-1 \pm \sqrt{2}$
since $\frac{\pi}{8}$ lies in the first quadrant, $y=\tan \frac{\pi}{8}$ is positve. Hence
$\tan \frac{\pi}{8}=\sqrt{2}-1$
The number of values of $x$ in the interval $[0, 5\pi]$ satisfying the equation $3sin^2x\, \,-\,\, 7sinx + 2 = 0$ is
If $\cos 2\theta = (\sqrt 2 + 1)\,\,\left( {\cos \theta - \frac{1}{{\sqrt 2 }}} \right)$, then the value of $\theta $ is
If $1 + \sin x + {\sin ^2}x + .....$ to $\infty = 4 + 2\sqrt 3 ,\,0 < x < \pi ,$ then
If $\cos \,\alpha + \cos \,\beta = \frac{3}{2}$ and $\sin \,\alpha + \sin \,\beta = \frac{1}{2}$ and $\theta $ is the the arithmetic mean of $\alpha $ and $\beta $ , then $\sin \,2\theta + \cos \,2\theta $ is equal to
If $\sin 2\theta = \cos 3\theta $ and $\theta $ is an acute angle, then $\sin \theta $ is equal to