$\tan \frac{\pi}{8}$ का मान ज्ञात कीजिए।
Let $x=\frac{\pi}{8} .$ Then $2 x=\frac{\pi}{4}$
Now $\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$
or $\tan \frac{\pi}{4}=\frac{2 \tan \frac{\pi}{8}}{1-\tan ^{2} \frac{\pi}{8}}$
Let $y=\tan \frac{\pi}{8} .$ Then $1=\frac{2 y}{1-y^{2}}$
or $y^{2}+2 y-1=0$
Therefore $y=\frac{-2 \pm 2 \sqrt{2}}{2}=-1 \pm \sqrt{2}$
since $\frac{\pi}{8}$ lies in the first quadrant, $y=\tan \frac{\pi}{8}$ is positve. Hence
$\tan \frac{\pi}{8}=\sqrt{2}-1$
$[-\pi, \pi]$ के अन्तराल में $\sin \theta+\cos \theta=\sin 2 \theta$ समीकरण के हलों की संख्या होगी
$(x, y)$ के कितने युग्म समीकरणों $\sin x + \sin y = \sin (x + y)$ तथा $|x| + |y| = 1$ को संतुष्ट करते हैं
यदि $\sin x=\frac{3}{5}, \cos y=-\frac{12}{13}$ है, जहाँ $x$ तथा $y$ दोनों द्वितीय चतुर्थांश में स्थित हों तो $\sin (x+y)$ का मान ज्ञात कीजिए।
यदि $12{\cot ^2}\theta - 31\,{\rm{cosec }}\theta + {\rm{32}} = {\rm{0}}$, तो $\sin \theta $ का मान है
समुच्चय $S =\left\{ x \in R : 2 \cos \left(\frac{ x ^2+ x }{6}\right)=4^{ x }+4^{- x }\right\}$ में अवयवों की संख्या है