अतिपरवलय $\frac{{{x^2}}}{{16}} - \frac{{{{(y - 2)}^2}}}{9} = 1$ की नाभियाँ हैं  

  • A

    $(5, 2) (-5, 2)$

  • B

    $(5, 2) (5, -2)$

  • C

    $(5, 2) (-5, -2)$

  • D

    इनमें से कोई नहीं

Similar Questions

माना परवलय $y ^2=24 x$ के बिंदु $(\alpha, \beta)$ पर स्पर्श रेखा, रेखा $2 x +2 y =5$ के लंबवत है। तो अतिपरवलय $\frac{ x ^2}{\alpha^2}-\frac{ y ^2}{\beta^2}=1$ के बिंदु $(\alpha+4, \beta+4)$ पर अभिलंब किस बिंदु से होकर नहीं जाता ?

  • [JEE MAIN 2022]

माना अतिपरवलय $2 x ^{2}- y ^{2}=2$ पर दो बिन्दु $A (\sec \theta, 2 \tan \theta)$ तथा $B (\sec \phi, 2 \tan \phi)$ हैं जिनके लिए $\theta+\phi=\pi / 2$ है। यदि $A$ तथा $B$ पर अतिपरवलय के अभिलंबों का प्रतिच्छेदन बिन्दु $(\alpha, \beta)$ है, तो $(2 \beta)^{2}$ बराबर है ......... |

  • [JEE MAIN 2021]

निम्नलिखित अतिपरवलयों के शीर्षों और नाभियों के निर्देशांकों, उत्केंद्रता और नाभिलंब जीवा की लंबाई ज्ञात कीजिए।

$y^{2}-16 x^{2}=16$

समकोणिक अतिपरवलय की नियताओं के मध्य दूरी $10$ इकाई है, तब इसकी नाभियों के मध्य दूरी है

प्रतिबंधों को संतुष्ट करते हुए अतिपरवलय का समीकरण ज्ञात कीजिए

शीर्ष $(\pm 2,0),$ नाभियाँ $(±3,0)$