10-2. Parabola, Ellipse, Hyperbola
hard

अतिपरवलय $4 x ^{2}-5 y ^{2}=20$ की एक स्पर्श रेखा जो रेखा $x - y =2$ के समांतर है, का समीकरण है

A

$x -y + 1 = 0$

B

$x -y + 7 = 0$

C

$x -y + 9 = 0$

D

$x -y -3 = 0$

(JEE MAIN-2019)

Solution

Hyperbola is $\frac{{{x^2}}}{5} – \frac{{{y^2}}}{4} = 1$

Equation of its tangent in slop from is $y = mx \pm \sqrt {5{m^2} – 4} $

Hence tangent with slope $1$ is $y = x \pm 1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.