अतिपरवलय $H : x ^2- y ^2=1$ तथा दीर्घवृत $E : \frac{ x ^2}{ a ^2}+\frac{ y ^2}{ b ^2}=1, a > b > 0$ के लिए, माना
$(1)$ $E$ की उत्केन्द्रता, $H$ की उत्केन्द्रता की व्युत्क्रमणीय हैं, तथा
$(2)$ रेखा $y =\sqrt{\frac{5}{2}} x + K , E$ तथा $H$ की एक उभयनिष्ठ स्पर्श रेखा है।
तब $4\left( a ^2+ b ^2\right)$ बराबर है
$2$
$0$
$1$
$3$
उस अतिपरवलय का समीकरण जिसकी उत्केन्द्रता $2$ तथा नाभियों के बीच की दूरी $8$ है, है
यदि एक अतिपरवलय के संयुग्मी अक्ष (conjugate axis) की लंबाई $5$ है तथा इसकी नाभियाँ के बीच की दूरी $13$ है, तो इस अतिपरवलय की उत्केंद्रता है
अतिपरवलय $25{x^2} - 16{y^2} = 400$ की उस जीवा का समीकरण क्या होगा, जिसका मध्य बिन्दु $(5, 3)$ है
अतिपरवलयों के शीर्षों, नाभियों के निर्देशांक, उत्केंद्रता और नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$49 y^{2}-16 x^{2}=784$
एक अतिपरवलय के शीर्ष $(0, 0)$ तथा $(10, 0)$ और एक नाभि $(18, 0)$ है। अतिपरवलय का समीकरण है