7.Binomial Theorem
hard

$x \in R , x \neq-1$ के लिए, यदि $(1+x)^{2016}+x(1+x)^{2015}+x^{2}(1+x)^{2014}$ $+\ldots .+x^{2016}=\sum_{i=0}^{2016} a_{i} x^{i}$ है, तो $a_{17}$ बराबर है

 

A

$\frac{{2017\,!\,}}{{17\,!\,2000\,!}}$

B

$\frac{{2016\,!\,}}{{17\,!\,1999\,!}}$

C

$\frac{{2016\,!\,}}{{16\,!}}$

D

$\frac{{2017\,!\,}}{{2000\,!}}$

(JEE MAIN-2016)

Solution

$S=(1+x)^{2016}+x(1+x)^{2015}+x^{2}(1+x)^{2014}$

$+\ldots+x^{2015}(1+x)+x^{2016}……..(i)$

$\left(\frac{x}{1+x}\right) S=x(1+x)^{2015}+x^{2}(1+x)^{2014}$

$+\ldots +x^{2016}+\frac{x^{2017}}{1+x}……..(ii)$

Subtracting $(i)$ from $(ii)$

$\frac{S}{1+x}=(1+x)^{2016}-\frac{x^{2017}}{1+x}$

$\therefore \quad S=(1+x)^{2017}-x^{2017}$

$a_{17}=$ coefficient of $x^{17}=^{2017} C_{17}$

$=\frac{2017 !}{17 ! 2000 !}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.