माना $f, g: N -\{1\} \rightarrow N , f(a)=\alpha$, जहाँ उन अभाज्य संख्याओं $p$, जिनके लिए $p ^\alpha$, $a$ को विभाजित करता है, की घातों में $\alpha$ अधिकतम है तथा $g(a)=a+1$, सभी $a \in N -\{1\}$ के लिए, द्वारा परिभाषित हैं। तब फलन $f+ g$
एकैकी है परन्तु आन्छादक नहीं है
आन्छादक है परन्तु एकैकी नहीं है।
एकैकी तथा आच्छादक दोनों है
न तो एकैकी है न ही आन्छादक है
यदि फलन $\mathrm{f}(\mathrm{x})=\sec ^{-1}\left(\frac{2 \mathrm{x}}{5 \mathrm{x}+3}\right)$ का प्रांत $[\alpha, \beta) \cup(\gamma, \delta]$ है, तो $|3 \alpha+10(\beta+\gamma)+21 \delta|$ बराबर है_________|
माना $S =\{1,2,3,4\}$ है। तब समुच्चय \{f: $S \times S \rightarrow S : f$ आच्छादक तथा $f ( a , b )= f ( b , a \geq a \forall( a , b ) \in S \times S \}$ में अवयवों की संख्या है
यदि $f(x) = \log \left[ {\frac{{1 + x}}{{1 - x}}} \right]$, तब $f\left[ {\frac{{2x}}{{1 + {x^2}}}} \right]$ बराबर है
${\sin ^{ - 1}}({\log _3}x)$ का प्रान्त है
माना $f( x )= a ^{ x }( a >0)$ को $f( x )=f_{1}( x )+f_{2}( x )$, के रूप में लिखा गया है जबकि $f_{1}( x )$ एक सम फलन है और $f_{2}( x )$ एक विषम फलन है, तो $f_{1}( x + y )+f_{1}( x - y )$ बराबर है