$z = a ^2 x ^3 y ^{\frac{1}{2}}$ के लिए, जहाँ $a$ एक नियतांक है। यदि $x$ तथा $y$ के मापन में प्रतिशत न्रुटि क्रमश: $4 \%$ तथा $12 \%$ है, तो $z$ की प्रतिशत त्रुटि होगी $...........\%$

  • [JEE MAIN 2022]
  • A
    $18$
  • B
    $188$
  • C
    $78$
  • D
    $15$

Similar Questions

सरल लोलक का दोलन काल $T = 2\pi \sqrt {\frac{l}{g}} $ से दिया जाता है, जहाँ l लगभग $100 \,cm$ है तथा न्यूनतम $1 \,mm$ तक शुद्धता से मापा जाता है। दोलन काल $(T)$ लगभग $2$ सैकण्ड है। यदि $100$ दोलनों के समय को उस घड़ी से मापा जाए जिसका अल्पतमांक $0.1$ सैकण्ड है, तो $g$ में प्रतिशत त्रुटि  ......... $\%$ होगी

प्रतिरोध, धारा एवं विद्युत परिपथ में धारा प्रवाह के समय के मापन में आई प्रतिशत त्रुटियाँ क्रमशः $1 \%, 2 \%$ एवं $3 \%$ हैं। अपव्ययित ऊष्मा के मापन में हर्ई अधिकतम प्रतिशत त्रटि का मान होगा

  • [JEE MAIN 2022]

एक कण $s$ दूरी $t$ समय में निम्न प्रकार से पूरी करता है $s=u t-\frac{1}{2} g t^2$ कण का प्रारम्भिक वेग $u=1.11 \pm 0.01 \,m / s$ मापा जाता है और प्रयोग में लगा समय अंतराल $t=1.01 \pm 0.1 \,s$ है । यदि त्वरण का मान $g=9.88 {\pm} 0.1 \,m / s ^2$ है, तो इन मापनों के साथ विद्यार्थी कुल दूरी का  ........ $m$ मान आकलित (report) करेगा?

  • [KVPY 2017]

यदि सभी स्वतंत्र राशियों (independent quantities) की मापन त्रुटियाँ (measurement errors) ज्ञात हो, तो किसी निर्भर राशि (dependent quantity) की त्रुटि का परिकलन (calculation) किया जा सकता है। इस परिकलन में श्रेणी प्रसार (series expansion) का प्रयोग किया जाता है और इस प्रसार को त्रुटि (error) के पहले घात (first power) पर रून्डित (truncate) किया जाता है। उदाहरण स्वरूप, सम्बन्ध $z=x / y$ में यदि $x, y$ और $z$ की त्रुटियाँ क्रमशः $\Delta x, \Delta y$ और $\Delta z$ हों, तो

$z \pm \Delta z=\frac{x \pm \Delta x}{y \pm \Delta y}=\frac{x}{y}\left(1 \pm \frac{\Delta x}{x}\right)\left(1 \pm \frac{\Delta y}{y}\right)^{-1} .$

$\left(1 \pm \frac{\Delta y}{y}\right)^{-1}$ का श्रेणी प्रसार, $\Delta y / y$ में पहले घात तक, $1 \mp(\Delta y / y)$ है। स्वतंत्र राशियों की आपेक्षिक त्रुटियाँ (relative errors) सदैव जोड़ी जाती हैं। इसलिए $z$ की त्रुटि होगी

$\Delta z=z\left(\frac{\Delta x}{x}+\frac{\Delta y}{y}\right) .$

उपरोक्त परिकलन में $\Delta x / x \ll 1, \Delta y / y \ll 1$ माने गये हैं। इसलिए इन राशियों की उच्चतर घातें (higher powers) उपेक्षित हैं।

($1$) एक विमा-रहित (dimensionless) राशि $a$ को माप कर, एक अनुपात (ratio) $r=\frac{(1-a)}{(1+a)}$ का परिकलन करना है। यदि $a$ की मापन की त्रुटि $\Delta a$ है $(\Delta a / a \ll 1)$, तो $r$ के परिकलन की त्रुटि $\Delta r$ क्या होगी ?

$(A)$ $\frac{\Delta \mathrm{a}}{(1+\mathrm{a})^2}$ $(B)$ $\frac{2 \Delta \mathrm{a}}{(1+\mathrm{a})^2}$ $(C)$ $\frac{2 \Delta \mathrm{a}}{\left(1-\mathrm{a}^2\right)}$ $(D)$ $\frac{2 \mathrm{a} \Delta \mathrm{a}}{\left(1-\mathrm{a}^2\right)}$

($2$) एक प्रयोग के आरंभ में रेडियोएक्टिव नाभिकों की संख्या $3000$ है। प्रयोग के पहले $1.0$ सेकंड में $1000 \pm 40$ नाभिकों का क्षय हो जाता है $\mid$ यदि $|x| \ll 1$ हो, तो $x$ के पहले घात तक $\ln (1+x)=x$ है। क्षयांक (decay constant) $\lambda$ के निर्धारण में त्रुटि $\Delta \lambda, s^{-1}$ में, है

$(A) 0.04$    $(B) 0.03$    $(C) 0.02$   $(D) 0.01$

इस प्रश्न के उतर दीजिये $1$ ओर $2.$

  • [IIT 2018]

सरल लोलक का उपयोग करते हुए, गुरूत्वीय त्वरण $( g )$ को ज्ञात करने के किसी प्रयोग में,$1$ सेकण्ड रिसोल्यूशन (विभेदन काल) वाली घड़ी के $100$ दोलनों के समय से मापा गया आवर्तकाल $0.5\,s$ आता है। यदि मापी गई लम्बाई का मान $10 cm$ है जिसमें ज्ञात शुद्धि $1\,mm$ है। $g$ के परिकलित मान में प्राप्त शुद्धता $x \%$ है। $x$ का मान है।

  • [JEE MAIN 2022]