माध्यमान प्रमेय सत्यापित कीजिए यदि अंतराल $[a, b]$ में $f(x)=x^{3}-5 x^{2}-3 x,$ जहाँ $a=1$ और $b=3$ है। $f(c)=0$ के लिए $c \in(1,3)$ को ज्ञात कीजिए।
The given function $f$ is $f(x)=x^{2}-5 x^{2}-3 x$
$f,$ being a polynomial function, is continuous in $[1,3],$ and is differentiable in $(1,3)$
Whose derivative is $3 x^{2}-10 x-3$
$f(1)=1^{2}-5 \times 1^{2}-3 \times 1=-7, f(3)=3^{3}-3 \times 3=27$
$\therefore \frac{f(b)-f(a)}{b-a}=\frac{f(3)-f(1)}{3-1}=\frac{-27-(-7)}{3-1}=-10$
Mean Value Theorem states that there exist a point $c \in(1,3)$ such that $f^{\prime}(c)=-10$
$f^{\prime}(c)=-10$
$\Rightarrow 3 c^{2}-10 c-3=10$
$\Rightarrow 3 c^{2}-10 c+7=0$
$\Rightarrow 3 c^{2}-3 c-7 c+7=0$
$\Rightarrow 3 c(c-1)-7(c-1)=0$
$\Rightarrow(c-1)(3 c-7)=0$
$\Rightarrow c=1, \frac{7}{3}$ where $c=\frac{7}{3} \in(1,3)$
Hence, Mean Value Theorem is verified for the given function and $c=\frac{7}{3} \in(1,3)$ is the only point for which $f^{\prime}(c)=0$
मध्यमान प्रमेय $\frac{{f(b) - f(a)}}{{b - a}} = f'(c)$ में, यदि $a = 0,b = \frac{1}{2}$ तथा $f(x) = x(x - 1)(x - 2)$ हो, तो $ c$ का मान है
मध्यमान प्रमेय $f(b) - f(a) = (b - a)f'({x_1});$ $a < {x_1} < b$ से यदि $f(x) = \frac{1}{x}$, तो${x_1} = $
माना कोई फलन $f$ अंतराल $[0,2]$ में संतत है तथा $(0,2)$ में दो बार अवकलनीय है। यदि $f (0)=0$, $f(1)=1$ तथा $f(2)=2$, हैं, तो
फलन $f(x) = {x^2} - 4$ के लिये रोले प्रमेय किस अन्तराल में सत्य है
यदि $f:[-5,5] \rightarrow R$ एक संतत फलन है और यदि $f^{\prime}(x)$ किसी भी बिंदु पर शून्य नहीं होता है तो सिद्ध कीजिए कि $f(-5) \neq f(5)$