यदि $f:[-5,5] \rightarrow R$ एक संतत फलन है और यदि $f^{\prime}(x)$ किसी भी बिंदु पर शून्य नहीं होता है तो सिद्ध कीजिए कि $f(-5) \neq f(5)$
It is given that $f:[-5,5] \rightarrow R$ is a differentiable function.
Since every differentiable function is a continuous function, we obtain
a) $f$ is continuous on $[-5,5].$
b) $f$ is continuous on $(-5,5).$
Therefore, by the Mean Value Theorem, there exists $c \in(-5,5)$ such that
$f^{\prime}(c)=\frac{f(5)-f(-5)}{5-(-5)}$
$\Rightarrow 10 f^{\prime}(c)=f(5)-f(-5)$
It is also given that $f^{\prime}(x)$ does not vanish anywhere.
$\therefore f^{\prime}(c) \neq 0$
$\Rightarrow 10 f^{\prime}(c) \neq 0$
$\Rightarrow f(5)-f(-5) \neq 0$
$\Rightarrow f(5) \neq f(-5)$
Hence, proved.
फलन $f ( x )= x ^{3}-4 x ^{2}+8 x +11, x \in[0,1]$ के लिए लग्रांज मध्यमान प्रमेय में $c$ का मान है
मध्यमान प्रमेय $\frac{{f(b) - f(a)}}{{b - a}} = f'(c)$ में, यदि $a = 0,b = \frac{1}{2}$ तथा $f(x) = x(x - 1)(x - 2)$ हो, तो $ c$ का मान है
फलन $f(x) = {(x - 3)^2}$ मध्यमान प्रमेय की सभी शर्तो को $ [3, 4] $ में सन्तुष्ट करता है। यदि $y = {(x - 3)^2}$ पर एक बिन्दु से खींची गई स्पर्श रेखा $ (3, 0) $ और $(4, 1)$ को मिलाने वाली जीवा के समान्तर हो, तो वह बिन्दु है
माना $f(x) = \left\{ {\begin{array}{*{20}{c}}
{{x^2}\ln x,\,x > 0} \\
{0,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0}
\end{array}} \right\}$, तब $x \in [0,1]$ के लिए $ f$ पर रोले की प्रमेय मान्य है, यदि $\alpha = $
बहुपदों $p: R \rightarrow R$, जिसके लिए $p(0)=0$, सभी $x \neq 0$ के लिए $p(x)>x^2$ तथा $p^{\prime \prime}(0)=$ $\frac{1}{2}$ है, की संख्या होगी :