इस प्रश्न में $[x]$ वह अधिकतम पूर्णांक है जो दी गयी वास्तविक संख्या $x$ से कम या बराबर है और $\{x\}=x-[x]$ | अंतराल $0 \leq x \leq 2015$ में समीकरण $[x]\{x\}=5$ के कितने शून्यक हैं ?
$0$
$3$
$2008$
$2009$
समीकरण $e ^{4 x }+ e ^{3 x }-4 e ^{2 x }+ e ^{ x }+1=0$ के वास्तविक मूलों की संख्या है
समीकरण $\mathrm{e}^{\sin x}-2 \mathrm{e}^{-\sin x}=2$ के हलों की संख्या है
यदि $a, b, c, d,-5$ तथा 5 के बीच की वास्तविक संख्याएँ इस प्रकार हैं कि $|a|=\sqrt{4-\sqrt{5-a}}, \quad|b|=\sqrt{4+\sqrt{5-b}}, \quad|c|=\sqrt{4-\sqrt{5+c}},|d|=\sqrt{4+\sqrt{5+a}}$ तब गुणांक $abcd$ क्या होगा ?
यदि $\frac{{2x}}{{2{x^2} + 5x + 2}} > \frac{1}{{x + 1}}$ तो
माना $\alpha, \beta, \gamma$ समीकरण $x^3+b x+c=0$ के तीन मूल हैं। यदि $\beta \gamma=1=-\alpha$, तो $b^3+2 c^3-3 \alpha^3-6 \beta^3-8 \gamma^3$ बराबर है।