- Home
- Standard 11
- Physics
किसी दिक्स्थान पर एक स्वेच्छ गति के लिए निम्नलिखित संबंधों में से कौन-सा सत्य है ?
$(a)$ $v _{\text {औसत }}=(1 / 2)\left( v \left(t_{1}\right)+ v \left(t_{2}\right)\right)$
$(b)$ $v _{\text {औमन }}=\left[ r \left(t_{2}\right)- r \left(t_{1}\right)\right] /\left(t_{2}-t_{1}\right)$
$(c)$ $v (t)= v (0)+ a t$
$(d)$ $r (t)= r (0)+ v (0) t+(1 / 2) a t^{2}$
$(e)$ $a _{\text {औमन }}=\left[ v \left(t_{2}\right)- v \left(t_{1}\right)\right] /\left(t_{2}-t_{1}\right)$
यहाँ ' औसत' का आशय समय अंतराल $t_{2}$ व $t_{1}$ से संबांधित भौतिक राशि के औसत मान से है ।
Solution
$(a)$ False: It is given that the motion of the particle is arbitrary. Therefore, the average velocity of the particle cannot be given by this equation.
$(b)$ True: The arbitrary motion of the particle can be represented by this equation.
$(c)$ False: The motion of the particle is arbitrary. The acceleration of the particle may also be non-uniform. Hence, this equation cannot represent the motion of the particle in space.
$(d)$ False: The motion of the particle is arbitrary; acceleration of the particle may also be non-uniform. Hence, this equation cannot represent the motion of particle in space.
$(e)$ True: The arbitrary motion of the particle can be represented by this equation.