If $A$ and $B$ are two sets such that $A \subset B$, then what is $A \cup B ?$
If $A$ and $B$ are two sets such that $A \subset B,$ then $A \cup B=B$
For any sets $\mathrm{A}$ and $\mathrm{B}$, show that
$P(A \cap B)=P(A) \cap P(B).$
If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find
$\left( {A \cup D} \right) \cap \left( {B \cup C} \right)$
Consider the sets $A$ and $B$ of $A=\{2,4,6,8\}$ and $B=\{6,8,10,12\}$ Find $A \cap B .$
If $X = \{ {4^n} – 3n – 1:n \in N\} $ and $Y = \{ 9(n – 1):n \in N\} ,$ then $X \cup Y$ = . . . . .
If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find
$C-A$
Confusing about what to choose? Our team will schedule a demo shortly.