કોઈપણ ગણ $\mathrm{A}$ અને $\mathrm{B}$ માટે સાબિત કરો કે, $P(A \cap B)=P(A) \cap P(B).$
Let $X \in P\left( {A \cap B} \right).$ Then $X \subset A \cap B.$ So, $X \subset A$ and $X \subset B.$ Therefore, $X \in P\left( A \right)$ and $X \in P\left( B \right)$ which implies $X \in P\left( A \right) \cap P\left( B \right).$ This given $P\left( {A \cap B} \right) \subset P\left( A \right) \cap P\left( B \right).$ Let $Y \in P\left( A \right) \cap P\left( B \right).$ Then $Y \in P\left( A \right)$ and $Y \in P\left( B \right).$ So, $Y \subset A$ and $Y \subset B$ Therefore, $Y \subset A \cap B,$ Which implies $Y \in P\left( {A \cap B} \right).$ This gives
$P\left( A \right) \cap P\left( B \right) \subset P\left( {A \cap B} \right)$
Hence $P\left( {A \cap B} \right) = P\left( A \right) \cap P\left( B \right)$
બે અલગ ગણો ન હોય તેવા ગણ $A$ અને $B$ માટે $n(A \cup B)$ =
$X =\{1,3,5\} \quad Y =\{1,2,3\}$ નો યોગગણ લખો
જો $A = \{ (x,\,y):y = {e^x},\,x \in R\} $,$B = \{ (x,\,y):y = {e^{ - x}},\,x \in R\} .$ તો . .
યોગગણ લખો : $A=\{a, e, i, o, u\} B=\{a, b, c\}$
જો $X=\{a, b, c, d\}$ અને $Y=\{f, b, d, g\},$ તો મેળવો : $X-Y$