अतिपरवलय $\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1$ के लिए $'\alpha '$ का मान परिवर्तित करने पर निम्न में से क्या अचर रहेगा
शीर्षो के भुज
नाभियों के भुज
उत्केन्द्रता
नियताएँ
उस बिन्दु $P(\alpha ,\,\beta )$ का बिन्दुपथ जो इस प्रकार गमन करता है कि रेखा $y = \alpha x + \beta $, अतिपरवलय $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ की स्पर्श रेखा है, है
माना अतिपरवलय $\mathrm{H}: \frac{\mathrm{x}^2}{9}-\frac{\mathrm{y}^2}{4}=1$ पर प्रथम चतुर्थांश में एक बिंदु $P$ तथा $H$ फी दो नामियों से बने त्रिभुज का क्षेत्रफल $2 \sqrt{13}$ है। तो $\mathrm{P}$ की मूल बिंदु से दूरी का वर्ग है।
अतिपरवलयों के शीर्षों, नाभियों के निर्देशांक, उत्केंद्रता और नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$\frac{y^{2}}{9}-\frac{x^{2}}{27}=1$
प्रतिबंधों को संतुष्ट करते हुए अतिपरवलय का समीकरण ज्ञात कीजिए
शीर्ष $(\pm 7,0), e=\frac{4}{3}$
अतिपरवलय $\frac{x^2}{9}-\frac{y^2}{4}=1$, पर सरल रेखा $2 x-y=1$ के समान्तर स्पर्श रेखाये खींची गयी है। इन स्पर्श रेखाओं के अतिपरवलय पर स्पर्श बिन्दु (points of contacts) निम्न है
$(A)$ $\left(\frac{9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
$(B)$ $\left(-\frac{9}{2 \sqrt{2}},-\frac{1}{\sqrt{2}}\right)$
$(C)$ $(3 \sqrt{3},-2 \sqrt{2})$
$(D)$ $(-3 \sqrt{3}, 2 \sqrt{2})$