7.Binomial Theorem
hard

यदि धन पूर्णाकों $m$ तथा $n$ के लिए

$(1-y)^{m}(1+y)^{n}=1+a_{1} y+a_{2} y^{2}+\ldots .+a_{m-n} y^{m+n}$ तथा $a_{1}=a_{2}=10$ हैं, तो $(m+n)$ बराबर है

A

$88$

B

$64$

C

$100$

D

$80$

(JEE MAIN-2021)

Solution

$(1-y)^{m}(1+y)^{n}$

Coefficient of $y=1 .{ }^{n} C_{1}+{ }^{m} C_{1}(-1)$

$=n-m=10$ $\ldots(1)$

Coefficient of $\mathrm{y}^{2}\left(\mathrm{a}_{2}\right)$

$=1 .{ }^{n} \mathrm{C}_{2}-{ }^{n} \mathrm{C}_{1} \cdot{ }^{n} C_{1 .}+1 \cdot{ }^{m} C_{2}=10$

$=\frac{n(n-1)}{2}-m \cdot n+\frac{m(m-1)}{2}=10$

$m^{2}+n^{2}-2 m n-(n+m)=20$

$n+m=80$

$(n-m)^{2}-(n+m)=20$

By equation $(1)\,  \,(2)$

$\mathrm{m}=35, n=45$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.