यदि $n$, बहुपद ${\left[ {\frac{1}{{\sqrt {5{x^3} + 1}  - \sqrt {5{x^3} - 1} }}} \right]^8} $$+ {\left[ {\frac{1}{{\sqrt {5{x^3} + 1}  + \sqrt {5{x^3} - 1} }}} \right]^8}$ की घात है, तथा $m$ इसमें स्थित $x ^{ n }$ का गुणांक है, तो क्रमित युग्म $( n , m )$ बराबर है $:$

  • [JEE MAIN 2018]
  • A

    $\left( {12,{{\left( {20} \right)}^4}} \right)$

  • B

    $\left( {8,5{{\left( {10} \right)}^4}} \right)$

  • C

    $\left( {24,{{\left( {10} \right)}^8}} \right)$

  • D

    $\left( {12,8{{\left( {10} \right)}^4}} \right)$

Similar Questions

$(1+x)^{1000}+x(1+x)^{999}+x^{2}(1+x)^{998}+$ $\cdots \cdots+x^{1000}$ के द्विपद प्रसार में $x^{50}$ का गुणाँक है

  • [JEE MAIN 2014]

माना $\left(\frac{1}{3} x^{\frac{1}{3}}+\frac{1}{2 x^{\frac{2}{3}}}\right)^{18}$ के प्रसार में सातवें तथा तेरहवें पदों के गुणांक क्रमशः $m$ तथा $n$ है। तो $\left(\frac{n}{m}\right)^{\frac{1}{3}}$ बराबर है :

  • [JEE MAIN 2024]

यदि ${\left( {\sqrt[3]{{\frac{a}{{\sqrt b }}}} + \sqrt {\frac{b}{{\sqrt[3]{a}}}} } \right)^{21}}$ के प्रसार में $(r + 1)$ वें पद में $a$ तथा $b$ की समान घातें हैं, तब $r$ का मान है

दिया गया है कि ${\left( {2 + \frac{3}{8}x} \right)^{10}}$ के प्रसार में चौथा पद महत्त्म संख्यात्मक मान रखता है, तो इसके लिये $x$ के मान का परास होगा

$\left(2^{1 / 3}+3^{1 / 4}\right)^{12}$ के प्रसार में, उन सभी पदों, जो परिमेय संख्याएँ हैं, का योगफल है

  • [JEE MAIN 2021]