8.Electromagnetic waves
medium

For the plane electromagnetic wave given by $\mathrm{E}=\mathrm{E}_0 \sin (\omega \mathrm{t}-\mathrm{kx})$ and $\mathrm{B}=\mathrm{B}_0 \sin (\omega \mathrm{t}-\mathrm{kx})$, the ratio of average electric energy density to average magnetic energy density is

A

$1$

B

$\frac{1}{2}$

C

$2$

D

$4$

(JEE MAIN-2023)

Solution

$\frac{\text { Electric energy density }}{\text { Magnetic energy density }}=\frac{\frac{1}{2} \in_0 \mathrm{E}_{\mathrm{rms}}^2}{\left(\frac{\mathrm{B}_{\mathrm{rms}}^2}{2 \mu_0}\right)}$

$=\left(\frac{\mathrm{E}_{\mathrm{rms}}}{\mathrm{B}_{\mathrm{rms}}}\right)^2 \cdot \mu_0 \in_0 \quad\left[\mathrm{C}=\frac{1}{\mu_0 \epsilon_0}\right]$

$=\frac{\mathrm{C}^2}{\mathrm{C}^2}=1$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.