એક પ્રવેશ કસોટીને બે પરીક્ષાના આધાર પર શ્રેણીબદ્ધ કરવામાં આવે છે. યાદચ્છિક રીતે પસંદ કરેલા વિદ્યાર્થીની પહેલી પરીક્ષામાં પાસ થવાની સંભાવના $0.8$ છે અને બીજી પરીક્ષામાં પાસ થવાની સંભાવના $0.7$ છે. બંનેમાંથી ઓછામાં ઓછી એક પરીક્ષામાં પાસ થવાની સંભાવના $0.95$ છે. બંને પરીક્ષામાં પાસ થવાની સંભાવના શું છે? 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $A$ and $B$ be the events of passing first and second examinations respectively.

Accordingly, $P(A)=0.8$, $P(B)=0.7$ and $P ( A$ or $B )=0.95$

We know that $P ( A$ or $B )= P ( A )+ P ( B )- P ( A$ and $B )$

$0.95=0.8+0.7- P ( A$ and $B )$

$P ( A$ and $B )=0.8+0.7-0.95=0.55$

Thus, the probability of passing both the examinations is $0.55$.

Similar Questions

ભારતને ટોસ જીતવાની સંભાવના $3/4$ છે. જો તે ટોસ જીતે, તો મેચ  જીતવાની સંભાવના $4/5$ થાય નહિતર માત્ર $1/2$ થાય તો ભારત મેચ જીતે તેની સંભાવના મેળવો.

જો $A$ અને $B$ નિરપેક્ષ ઘટનાઓ હોય અને $P(A)=\frac{3}{5}$ અને$P(B)=\frac{1}{5}$ હોય, તો $P(A \cap B)$ શોધો. 

જો $A$ અને $B$ એ સ્વતંત્ર ઘટના છે કે જેથી $\mathrm{P}(\mathrm{A})=\mathrm{p}, \mathrm{P}(\mathrm{B})=2 \mathrm{p} $ થાય છે. તો $\mathrm{p}$ ની મહતમ કિમંત મેળવો કે જેથી $\mathrm{P}$ ($\mathrm{A}, \mathrm{B}$ પૈકી એક્જ ઘટના ઉદભવે $)=\frac{5}{9}$ .

  • [JEE MAIN 2021]

જો $A$ અને $B$ એ ઘટના છે,તો બંને માંથી કોઇ એકજ ઉદ્રભવે તેની સંભાવના મેળવો.

  • [IIT 1984]

પેટી $A$ માં છ લાલ અને ચાર કાળા દડા છે અને પેટી $B$ માં ચાર લાલ અને છ કાળા દડા છે.જો એક દડો પેટી $A$ માંથી યાદ્રચ્છિક રીતે પસંદ કરી ને પેટી $B$ માં મુકવામાં આવે છે.અને પછી એક દડો પેટી $B$ માંથી યાદ્રચ્છિક રીતે પસંદ કરી ને પેટી $A$ માં મુકવામાં આવે છે.હવે જો એક દડો પેટી $A$ માંથી યાદ્રચ્છિક રીતે પસંદ કરતાં તે લાલ હેાય તેની સંભાવના મેળવો.

  • [IIT 1988]