- Home
- Standard 11
- Mathematics
ધારો કે,$9 < x_1 < x_2 < \ldots < x_7$ એ સમાંતર શ્રેણી $(A.P)$ માં છે અને તેનો સામાન્ય તફાવત $d$ છે.જો $x_1, x_2 \ldots,x _7$ નું પ્રમાણિત વિચલન $4$ હોય અને મધ્યક $\overline{ x }$ હોય,તો $\overline{ x }+ x _6=............$
$18\left(1+\frac{1}{\sqrt{3}}\right)$
$34$
$2\left(9+\frac{8}{\sqrt{7}}\right)$
$25$
Solution
$9=x_1 < x_2 < \ldots \ldots < x_7$
$9,9+d, 9+2 d, \ldots \ldots .9+6 d$
$0, d, 2 d, \ldots \ldots \cdot 6$
$\bar{x}_{\text {new }}=\frac{21 d }{7}=3 d$
$16=\frac{1}{7}\left(0^2+1^2+\ldots \ldots+6^2\right) d^2-9 d^2$
$=\frac{1}{7}\left(\frac{6 \times 7 \times 13}{6}\right) d ^2-9 d ^2$
$16=4 d^2$
$d^2=4$
$d=2$
$\bar{x}+x_6=6+9+10+9$
Similar Questions
આવૃતી વિતરણ
$\mathrm{x}$ | $\mathrm{x}_{1}=2$ | $\mathrm{x}_{2}=6$ | $\mathrm{x}_{3}=8$ | $\mathrm{x}_{4}=9$ |
$\mathrm{f}$ | $4$ | $4$ | $\alpha$ | $\beta$ |
માં જો મધ્યક અને વિચરણ અનુક્રમે $6$ અને $6.8$ છે. જો $x_{3}$ એ $8$ માંથી $7$ કરવામાં આવે છે તો નવી માહિતીનો મધ્યક મેળવો.
એક ધોરણના $50$ વિદ્યાર્થીઓ દ્વારા ત્રણ વિષયો ગણિત, ભૌતિકશાસ્ત્ર અને રસાયણશાસ્ત્રમાં મેળવેલા ગુણનો મધ્યક અને પ્રમાણિત વિચલન નીચે પ્રમાણે છે :
વિષય |
ગણિત | ભૌતિકશાસ્ત્ર |
રસાયણશાસ્ત્ર |
મધ્યક | $42$ | $32$ | $40.9$ |
પ્રમાણિત વિચલન | $12$ | $15$ | $20$ |
કયા વિષયમાં સૌથી વધુ ચલન અને કયા વિષયમાં સૌથી ઓછું ચલન છે ?