13.Statistics
hard

ધારો કે,$9 < x_1 < x_2 < \ldots < x_7$ એ સમાંતર શ્રેણી $(A.P)$ માં છે અને તેનો સામાન્ય તફાવત $d$ છે.જો $x_1, x_2 \ldots,x _7$ નું પ્રમાણિત વિચલન $4$ હોય અને મધ્યક $\overline{ x }$ હોય,તો $\overline{ x }+ x _6=............$

A

$18\left(1+\frac{1}{\sqrt{3}}\right)$

B

$34$

C

$2\left(9+\frac{8}{\sqrt{7}}\right)$

D

$25$

(JEE MAIN-2023)

Solution

$9=x_1 < x_2 < \ldots \ldots < x_7$

$9,9+d, 9+2 d, \ldots \ldots .9+6 d$

$0, d, 2 d, \ldots \ldots \cdot 6$

$\bar{x}_{\text {new }}=\frac{21 d }{7}=3 d$

$16=\frac{1}{7}\left(0^2+1^2+\ldots \ldots+6^2\right) d^2-9 d^2$

$=\frac{1}{7}\left(\frac{6 \times 7 \times 13}{6}\right) d ^2-9 d ^2$

$16=4 d^2$

$d^2=4$

$d=2$

$\bar{x}+x_6=6+9+10+9$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.