$\lambda $ ની કિમંતોનો ગણ . . . . થાય જો સુરેખ સમીકરણો  $x - 2y - 2z = \lambda x$ ; $x + 2y + z = \lambda y$ ; $-x - y = \lambda z$ એ શૂન્યતર ઉકેલ હોય.

  • [JEE MAIN 2019]
  • A

    એકાકી ઉકેલ

  • B

    માત્ર બેજ ઉકેલ ધરાવે

  • C

    ખાલીગણ 

  • D

    બે કરતાં વધારે ઉકેલ છે

Similar Questions

જો $A \ne O$ અને $B \ne O$ એ $n × n$ કક્ષાવાળા શ્રેણિક હોય અને $AB = O $ તો . . .

ધારો કે $\omega $ એક એવી સંકર સંખ્યા છે કે જેથી $2\omega + 1 = z$ જયાં $z = \sqrt { - 3} $ . જો $\left| {\begin{array}{*{20}{c}}1&1&1\\1&{ - {\omega ^2} - 1}&{{\omega ^2}}\\1&{{\omega ^2}}&{{\omega ^7}}\end{array}} \right| = 3k$ હોય,તો $k$ મેળવો. .

  • [JEE MAIN 2017]

નિશ્ચાયકનો ઉપયોગ કરી $\mathrm{A}(1, 3)$ અને $\mathrm{B}(0, 0)$ ને જોડતી રેખાનું સમીકરણ શોધો અને જો ત્રિકોણ $\mathrm{ABD}$ નું ક્ષેત્રફળ $3$ ચોરસ એકમ થાય તેવું બિંદુ $\mathrm{D}(\mathrm{k}, 0)$ હોય, તો $\mathrm{k}$ શોધો. 

સમીકરણ $\left| {\,\begin{array}{*{20}{c}}x&2&{ - 1}\\2&5&x\\{ - 1}&2&x\end{array}\,} \right| = 0$ નો ઉકેલ મેળવો.

જો  $\left| \begin{gathered}
   - 6\ \ \,\,1\ \ \,\,\lambda \ \  \hfill \\
  \,0\ \ \,\,\,\,3\ \ \,\,7\ \  \hfill \\
   - 1\ \ \,\,0\ \ \,\,5\ \  \hfill \\ 
\end{gathered}  \right| = 5948 $, તો $\lambda $  મેળવો.