If $f(x)$ એ $[1,\,2]$ માટે રોલના પ્રમેયનું પાલન કરે છે અને $f(x)$ એ $[1,\,2]$ માં સતત છે તો $\int_1^2 {f'(x)dx}   = . . .$

  • A

    $3$

  • B

    $0$

  • C

    $1$

  • D

    $2$

Similar Questions

$f(x)$ એ  $[1,2]$ પર સતત અને $(1,2)$ પર વિકલનીય આપેલ છે જે $f(1) = 2, f(2) = 3$ અને $f'(x) \geq 1 \forall x \in (1,2)$ નું પાલન કરે છે અને $g(x)=\int\limits_1^x {f(t)\,dt\,\forall \,x\, \in [1,2]} $ દ્વારા વ્યાખ્યાયિત છે તો $[1,2]$ પર $g(x)$ ની મહતમ કિમંત મેળવો.

$a =-2$ અને $b = 2$ હોય, તો વિધેય $y=x^{2}+2$ માટે રોલનું પ્રમેય ચકાસો.

ધારો કે $f$ અને $g$ એ $(-2,2)$ પરનાં એવા દ્વિ વિકલનીય ચુગ્મ વિધેયો છે કે જેથી $f\left(\frac{1}{4}\right)=0, f\left(\frac{1}{2}\right)=0, f(1)=1$ અને $g\left(\frac{3}{4}\right)=0, g(1)=2 .$ ,તો $(-2,2)$ માં, $f(x) g^{\prime \prime}(x)+f^{\prime}(x) g^{\prime}(x)=0$ ના ઉકેલોની ન્યૂનતમ સંખ્યા $\dots\dots$છે.

  • [JEE MAIN 2022]

જો વિધેય $f(x) = {x^3} - 6{x^2} + ax + b$ એ અંતરાલ $[1,\,3]$ માં રોલનું પ્રમેય પાલન કરે છે અને $f'\left( {{{2\sqrt 3 + 1} \over {\sqrt 3 }}} \right) = 0$ તો $a =$ ..............

અંતરાલ $[0, 1]$ માં નીચે આપેલ વિધેય માટે લાંગ્રજય મધ્યકમાન પ્રમેય લાગુ ન પાડી શકાય.

  • [IIT 2003]