निम्नलिखित आँकड़ों से बताइए कि $A$ या $B$ में से किस में अधिक बिखराव है
अंक | $10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ |
समूह $A$ | $9$ | $17$ | $32$ | $33$ | $40$ | $10$ | $9$ |
समूह $B$ | $10$ | $20$ | $30$ | $25$ | $43$ | $15$ | $7$ |
Firstly, the standard deviation of group $A$ is calculated as follows.
Marks |
Group $A$ ${f_i}$ |
Mid-point ${x_i}$ |
${y_i} = \frac{{{x_i} - 45}}{{10}}$ | ${y_i}^2$ | ${f_i}{y_i}$ | ${f_i}{y_i}^2$ |
$10-20$ | $9$ | $15$ | $-3$ | $9$ | $-27$ | $81$ |
$20-30$ | $17$ | $25$ | $-2$ | $4$ | $-34$ | $68$ |
$30-40$ | $32$ | $35$ | $-1$ | $1$ | $-32$ | $32$ |
$40-50$ | $33$ | $45$ | $0$ | $0$ | $0$ | $0$ |
$50-60$ | $40$ | $55$ | $1$ | $1$ | $40$ | $40$ |
$60-70$ | $10$ | $65$ | $2$ | $4$ | $20$ | $40$ |
$70-80$ | $9$ | $75$ | $3$ | $9$ | $27$ | $81$ |
$150$ | $-6$ | $342$ |
Here, $h =10, N =150, A =45$
Mean $ = A + \frac{{\sum\limits_{i = 1}^7 {{x_i}} }}{N} \times h$
$ = 45 + \frac{{\left( { - 6} \right) \times 10}}{{150}} \times 45 - 0.4 = 44.6$
$\sigma _1^2 = \frac{{{h^2}}}{{{N^2}}}\left[ {N\sum\limits_{i = 1}^7 {{f_i}{y_i}^2 - {{\left( {\sum\limits_{i = 1}^7 {{f_i}{y_i}} } \right)}^2}} } \right]$
$=\frac{100}{22500}\left[150 \times 342-(-6)^{2}\right]$
$=\frac{1}{225}(51264)$
$=227.84$
$\therefore$ Standard deviation $\left(\sigma_{1}\right)=\sqrt{227.84}=15.09$
The standard deviation of group $B$ is calculated as follows.
Marks |
Group $A$ ${f_i}$ |
Mid-point ${x_i}$ |
${y_i} = \frac{{{x_i} - 45}}{{10}}$ | ${y_i}^2$ | ${f_i}{y_i}$ | ${f_i}{y_i}^2$ |
$10-20$ | $9$ | $15$ | $-3$ | $9$ | $9$ | $-30$ |
$20-30$ | $17$ | $25$ | $-2$ | $4$ | $4$ | $-40$ |
$30-40$ | $32$ | $35$ | $-1$ | $1$ | $1$ | $-30$ |
$40-50$ | $33$ | $45$ | $0$ | $0$ | $0$ | $0$ |
$50-60$ | $40$ | $55$ | $1$ | $1$ | $1$ | $43$ |
$60-70$ | $10$ | $65$ | $2$ | $4$ | $4$ | $30$ |
$70-80$ | $9$ | $75$ | $3$ | $9$ | $9$ | $21$ |
$150$ | $-6$ |
Mean $ = A + \frac{{\sum\limits_{i = 1}^7 {{f_i}{y_i}} }}{N} \times h$
$ = 45 + \frac{{\left( { - 6} \right) \times 10}}{{150}} \times 45 - 0.4 = 44.6$
$\sigma _2^2 = \frac{{{h^2}}}{{{N^2}}}\left[ {N\sum\limits_{i = 1}^7 {{f_i}{y_i}^2 - {{\left( {\sum\limits_{i = 1}^7 {{f_i}{y_i}} } \right)}^2}} } \right]$
$=\frac{100}{22500}\left[150 \times 366-(-6)^{2}\right]$
$=\frac{1}{225}(54864)=243.84$
$\therefore$ Standard deviation $\left(\sigma_{1}\right)=\sqrt{243.84}=15.61$
Since the mean of both the groups is same, the group with greater standard deviation will be more variable.
Thus, group $B$ has more variability in the marks.
यदि $n$ प्रेक्षणों $x_{1}, x_{2}, \ldots, x_{n}$ का माध्य $\bar{x}$ तथा प्रसरण $\sigma^{2}$ हैं तो सिद्ध कीजिए कि प्रेक्षणों $a x_{1}$, $a x_{2}, a x_{3}, \ldots, a x_{n}$ का माध्य और प्रसरण क्रमश: $a \bar{x}$ तथा $a^{2} \sigma^{2}(a \neq 0)$ हैं।
यदि संख्याओं $-1,0,1, k$ का मानक विचलन $\sqrt{5}$ है, जहाँ $k > 0$ है, तो $k$ बराबर है
सात प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $8$ तथा $16$ है। यदि इनमें से $5$ प्रेक्षण $2,4,10,12,14$ है, तो शेष दो प्रेक्षणों का गुणनफल है
पाँच प्रेक्षणों का माध्य $5$ है तथा उनका प्रसरण $9.20$ है। यदि इन दिए गए पाँच प्रेक्षणों में से तीन $1,3$ तथा $8$ हैं, तो अन्य दो प्रेक्षणों का एक अनुपात है
यदि $50$ प्रेक्षणों $x _{1}, x _{2} \ldots, x _{50}$ का माध्य तथा मानक विचलन दोनों $16$ है, तो $\left(x_{1}-4\right)^{2},\left(x_{2}-4\right)^{2}, \ldots \cdots$ $\left( x _{50}-4\right)^{2}$ का माध्य है