गॉस का नियम लागू नहीं होता यदि
यदि चुम्बकीय एकल ध्रुव विद्यमान होते
व्युत्क्रम वर्ग का नियम पूर्णत: सत्य नहीं होता
प्रकाश का वेग सार्वत्रिक नियतांक नहीं होता
उपरोक्त में से कोई नहीं
एक आवेश Q को एक घन के किनारे पर रखा जाता है। इसकी प्रत्येक फलक से निकलने वाला वैधुत फ्लक्स होगा :
प्रदर्शित चित्र में $\mathrm{C}_1$ तथा $\mathrm{C}_2$ दो खोखले संकेन्द्रीय घन है जिनके अन्दर क्रमशः $2 Q$ व $3 Q$ आवेश स्थित है। $\mathrm{C}_1$ व $\mathrm{C}_2$ से गुजरने वाले वैद्युत फ्लक्स का अनुपात है :
कोई विध्यूत क्षेत्र धनात्मक $x$ के लिए, धनात्मक $x$ दिशा में एकसमान है तथा उसी परिमाण के साथ परंतु ऋणात्मक $x$ के लिए, ऋ्णात्मक $x$ दिशा में एकसमान है। यह दिया गया है कि $E =200 \hat{ i }$ \,N/C जबकि $x>0$ तथा $E =-200 \hat{ i }\, N/C,$ जबकि $x<0$ है। $20 \,cm$ लंबे $5 \,cm$ त्रिज्या के किसी लंबवृत्तीय सिलिंडर का केंद्र मूल बिंदु पर तथा इस अक्ष $x$ के इस प्रकार अनुदिश है कि इसका एक फलक चित्र में दर्शाए अनुसार $x=+10\, cm$ तथा दूसरा फलक $x=-10\, cm$ पर है। $(a)$ प्रत्येक चपटे फलक से गुजरने वाला नेट बहिर्मुखी फ्लक्स कितना है? $(b)$ सिलिंडर के पाशर्व से गुजरने वाला फ्लक्स कितना है? $(c)$ सिलिंडर से गुजरने वाला नेट बहिर्मुखी फ्लक्स कितना है? $(d)$ सिलिंडर के भीतर नेट आवेश कितना है?
एक घनाकार क्षेत्र की भुजा $a$ और केन्द्र उद्गम पर हैं। इसमें तीन बिन्दु आवेश रख है : $+3 q (0,0,0)$ पर, $- q (0,- a / 4,0)$ पर और $- q (0,+ a / 4,0)$ । सही विकल्प (विकल्पों का चुनाव करें।
$(A)$ $x =+\frac{ a }{2}$ तल से गुजर रहा कुल विधुत-फ्लक्स, $x =-\frac{ a }{2}$ तल से गुजर रहे कुल विधुत-फ्लक्स के बराबर है।
$(B)$ $y=+\frac{a}{2}$ तल से गुजर रहा कुल विधुत-फ्लक्स, $y=-\frac{a}{2}$ तल से गुजर रहे कुल विधुत-फ्लक्स से अधिक है।
$(C)$ पूरे घनाकर क्षेत्र से गुजर रहा कुल विधुत-फ्लक्स, $\frac{q}{\varepsilon_0}$ है।
$(D)$ $z=+\frac{a}{2}$ तल से गुजर रहा कुल विधुत-फ्लक्स, $x=+\frac{a}{2}$ तल से गुजर रहे कुल विधुत-फ्लक्स से बराबर है।
चार बंद पृष्ठ तथा उनके आवेश विन्यास को निम्न चित्र में दर्शाया गया है।
यदि उनके पृष्ठ से बद्ध वैद्युत फ्लक्स क्रमशः $\Phi_{1}, \Phi_{2^{\prime}} \Phi_{3}$ तथा $\Phi_{4}$ हों तो