$\tan 5\theta = \cot 2\theta $ નો વ્યાપક ઉકેલ મેળવો.
$($ જ્યાં $n \in Z)$
$\theta = \frac{{n\pi }}{7} + \frac{\pi }{{14}}$
$\theta = \frac{{n\pi }}{7} + \frac{\pi }{5}$
$\theta = \frac{{n\pi }}{7} + \frac{\pi }{2}$
$\theta = \frac{{n\pi }}{7} + \frac{\pi }{3}$
જો $\cos ec\,\theta = \frac{{p + q}}{{p - q}}$ $\left( {p \ne q \ne 0} \right)$, તો $\left| {\cot \left( {\frac{\pi }{4} + \frac{\theta }{2}} \right)} \right|$ = .......
જો $\sin \theta = \sqrt 3 \cos \theta , - \pi < \theta < 0$, તો $\theta = $
આપેલ સમીકરણના વ્યાપક ઉકેલ શોધો : $\sin x+\sin 3 x+\sin 5 x=0$
સમીકરણ $\frac{{\tan 3x - \tan 2x}}{{1 + \tan 3x\tan 2x}} = 1$ નું સમાધાન કરે તેવી $x$ ની કિમતોનો ગણ મેળવો.
સમીકરણ $2{\sin ^2}\theta = 4 + 3$$\cos \theta $ નું સમાધાન કરે તેવી $\theta $ ની $[0, 2\pi]$ કેટલી કિમત છે.