જો $\sin 2\theta = \cos 3\theta $ અને $\theta $ એ લઘુકોણ હોય તો $\sin \theta $ મેળવો.
$\frac{{\sqrt 5 - 1}}{4}$
$\frac{{ - \sqrt 5 - 1}}{4}$
$0$
એકપણ નહિ.
સમીકરણ $\sec \theta \,\, + \,\,\tan \theta \, = \,\sqrt 3 \,,\,0\,\, \leqslant \,\,\theta \,\, \leqslant \,\,2\pi$ ના ભિન્ન કેટલા ઉકેલો મળે છે ?
સમીકરણ $8\cos x \cdot \left( {\cos \left( {\frac{\pi }{6} + x} \right) \cdot \cos \left( {\frac{\pi }{6} - x} \right) - \frac{1}{2}} \right) = 1$ નાં અંતરાલ $\left[ {0,\pi } \right]$ માં તમામ ઉકેલોની સરવાળો જો $k\pi $ હોય તો $k = \;.\;.\;.$ .
જો $\cos \theta = \frac{{ - 1}}{2}$ અને ${0^o} < \theta < {360^o}$ તો $\theta $ ની કિમતો મેળવો.
સમીકરણ $cos^2\theta\, +\, sin\theta\, + 1\, =\, 0$ ના ઉકેલો ............ અંતરાલ આવેલ છે
જો કોઈ $0 < \alpha < \frac{\pi }{2}$ માટે ત્રિકોણ ની બાજુઓ $\sin \alpha ,\,\cos \alpha $ અને $\sqrt {1 + \sin \alpha \cos \alpha } $ આપેલ છે તો ત્રિકોણનો સૌથી મોટો ખૂણો......$^o$ મેળવો.