જો ${\sin ^2}\theta = \frac{1}{4},$ તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
$2n\pi \pm {( - 1)^n}\frac{\pi }{6}$
$\frac{{n\pi }}{2} \pm {( - 1)^n}\frac{\pi }{6}$
$n\pi \pm \frac{\pi }{6}$
$2n\pi \pm \frac{\pi }{6}$
$\sin 2 x-\sin 4 x+\sin 6 x=0$ ઉકેલો.
વિધાન $-1:$ ત્રિકોણમિતીય સમીકરણો $2\,sin^2\,\theta - cos\,2\theta = 0$ અને $2 \,cos^2\,\theta - 3\,sin\,\theta = 0$ ના અંતરાલ $[0, 2\pi ]$ માં બે સામાન્ય ઉકેલો મળે છે.
વિધાન $-2:$ સમીકરણ $2\,cos^2\,\theta - 3\,sin\,\theta = 0$ ના અંતરાલ $[0, \pi ]$ માં 2 ઉકેલો મળે
જો $0\, \le \,x\, < \frac{\pi }{2},$ તો $x$ ની કિમતો ની સંખ્યા મેળવો ક જેથી સમીકરણ $sin\,x -sin\,2x + sin\,3x=0,$ થાય.
જો $\sin \theta + \cos \theta = \sqrt 2 \cos \alpha $, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
સમીકરણ $2\sqrt 3 \cos \theta = \tan \theta $ નું સમાધાન કરે તેવા $\theta $ નો વ્યાપક ઉકેલ મેળવો.