સમીકરણ ${\tan ^2}\theta + \sec 2\theta - = 1$ નું સમાધાન કરે તેવા $\theta $ નો વ્યાપક ઉકેલ મેળવો.
$m\pi ,n\pi + \frac{\pi }{3}$
$m\pi ,n\pi \pm \frac{\pi }{3}$
$m\pi ,n\pi \pm \frac{\pi }{6}$
એકપણ નહિ.
જો $(1 + \tan \theta )(1 + \tan \phi ) = 2$, તો $\theta + \phi =$ .....$^o$
$(x, y)$ની બધી જોડ મેળવો કે જેથી ${2^{\sqrt {{{\sin }^2}{\kern 1pt} x - 2\sin {\kern 1pt} x + 5} }}.\frac{1}{{{4^{{{\sin }^2}\,y}}}} \leq 1$ થાય
સમીકરણ $\frac{{2(\sin {1^o} + \sin {2^o} + \sin {3^o} + ..... + \sin {{89}^o})}}{{2(\cos {1^o} + \cos {2^o} + .... + \cos {{44}^o}) + 1}}$ ની કિમત મેળવો
સમીકરણ ${\rm{cosec}}\theta + 2 = 0$ નું સમાધાન કરે તેવી $\theta (0 < \theta < {360^o})$ ની કિમતો મેળવો.
સમીકરણ યુગમો $x\,\, + \,\,y\,\, = \,\,\frac{{2\pi }}{3},\,{\rm{cos}}\,{\rm{x + }}\,{\rm{ cos}}\,{\rm{y}}\,{\rm{ = }}\,\frac{3}{2},$ જ્યાં $x$ અને $y$ એ વાસ્તવિક હોય તેવા ઉકેલોનો ગણ ...... છે.