$P ( A )=\frac{3}{5}$ और $P ( B )=\frac{1}{5},$ दिया गया है। यदि $A$ और $B$ परस्पर अपवर्जी घटनाएँ हैं, तो $P ( A$ या $B$ ), ज्ञात कीजिए।
Here, $P ( A )=\frac{3}{5} $, $P ( B )=\frac{1}{5}$
For mutually exclusive events $A$ and $B,$
$P ( A $ or $B )= P ( A )+ P ( B )$
$P ( A $ or $B )=\frac{3}{5}+\frac{1}{5}=\frac{4}{5}$
माना दो अनभिनत छ: फलकीय पासे $A$ तथा $B$ एक साथ उछाले गये। माना घटना $E_{1}$ पासे $A$ पर चार आना दर्शाती हैं, घटना $E_{2}$ पासे $B$ पर $2$ आना दर्शाती है तथा घटना $E_{3}$ दोनों पासों पर आने वाली संख्याओं का योग विषम दर्शाती है, तो निम्न में से कौन-सा कथन सत्य नहीं है?
दो विद्यार्थियों अनिल और आशिमा एक परीक्षा में प्रविष्ट हुए। अनिल के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.05$ है और आशिमा के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.10$ है। दोनों के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.02$ है। प्रायिकता ज्ञात कीजिए कि
दोनों में से केवल एक परीक्षा में उत्तीर्ण होगा।
घटनाएँ $A$ और $B$ इस प्रकार हैं कि $P ( A )=0.42, P ( B )=0.48$ और $P ( A$ और $B )=0.16 .$ ज्ञात कीजिए
$P ( A$ या $B )$
एक छात्र की गणित, भौतिकी, रसायन शास्त्र में उत्तीर्ण होने की प्रायिकतायें क्रमश: $m, p$ तथा $c$ हैं। इन विषयों में से इस छात्र के कम से कम एक विषय में पास होने की सम्भावना $75\%$ है, कम से कम दो विषयों में पास होने की $50\%$ और केवल दो ही विषयों में पास होने की सम्भावना $40\%$ हैं। निम्नलिखित में से कौन-कौन से सम्बन्ध सत्य हैं
$A$ और $B$ स्वतंत्र घटनाएँ दी गई हैं जहाँ $P ( A )=0.3, P ( B )=0.6$ तो $P ( A$ और $B$ ) का मान ज्ञात कीजिए।