In $\triangle ABC ,$ right-angled at $B , AB =24 \,cm , BC =7 \,cm .$ Determine:
$(i)$ $\sin A, \cos A$
$(ii)$ $\sin C, \cos C$
Applying Pythagoras theorem for $\triangle ABC ,$ we obtain
$A C^{2}=A B^{2}+B C^{2}$
$=(24\, cm )^{2}+(7\, cm )^{2}$
$=(576+49) \,cm ^{2}$
$=625\, cm ^{2}$
$\therefore A C=\sqrt{625} cm =25\, cm$
$(i)\,\sin A\frac{\text { Side opposite to } \angle A }{\text { Hypotenuse }}=\frac{ BC }{ AC }$
$=\frac{7}{25}$
$\cos A=\frac{\text { Side adjacent to } \angle A }{\text { Hypotenuse }}=\frac{ AB }{ AC}$$=\frac{24}{25}$
$(ii)$
$\sin C=\frac{\text { Side opposite to } \angle C }{\text { Hypotenuse }}=\frac{A B}{A C}$
$=\frac{24}{25}$
$\cos C=\frac{\text { Side adjacent to } \angle C}{\text { Hypotenuse }}=\frac{B C}{A C}$
$=\frac{7}{25}$
Given $\tan A=\frac{4}{3},$ find the other trigonometric ratios of the $\angle A$
State whether the following are true or false. Justify your answer.
$\sin (A+B)=\sin A+\sin B$
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$\frac{1+\sec A}{\sec A}=\frac{\sin ^{2} A}{1-\cos A}$
State whether the following are true or false. Justify your answer.
The value of $\cos \theta$ increases as $\theta$ increases
If $3 \cot A=4,$ check whether $\frac{1-\tan ^{2} A}{1+\tan ^{2} A}=\cos ^{2} A-\sin ^{2} A$ or not.