In $\triangle ABC ,$ right-angled at $B , AB =24 \,cm , BC =7 \,cm .$ Determine:

$(i)$ $\sin A, \cos A$

$(ii)$ $\sin C, \cos C$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Applying Pythagoras theorem for $\triangle ABC ,$ we obtain

$A C^{2}=A B^{2}+B C^{2}$

$=(24\, cm )^{2}+(7\, cm )^{2}$

$=(576+49) \,cm ^{2}$

$=625\, cm ^{2}$

$\therefore A C=\sqrt{625} cm =25\, cm$

$(i)\,\sin A\frac{\text { Side opposite to } \angle A }{\text { Hypotenuse }}=\frac{ BC }{ AC }$

$=\frac{7}{25}$

$\cos A=\frac{\text { Side adjacent to } \angle A }{\text { Hypotenuse }}=\frac{ AB }{ AC}$$=\frac{24}{25}$

$(ii)$

$\sin C=\frac{\text { Side opposite to } \angle C }{\text { Hypotenuse }}=\frac{A B}{A C}$

$=\frac{24}{25}$

$\cos C=\frac{\text { Side adjacent to } \angle C}{\text { Hypotenuse }}=\frac{B C}{A C}$

$=\frac{7}{25}$

1043-s6

Similar Questions

Given $\tan A=\frac{4}{3},$ find the other trigonometric ratios of the $\angle A$

State whether the following are true or false. Justify your answer.

$\sin (A+B)=\sin A+\sin B$

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\frac{1+\sec A}{\sec A}=\frac{\sin ^{2} A}{1-\cos A}$

State whether the following are true or false. Justify your answer.

The value of $\cos \theta$ increases as $\theta$ increases

If $3 \cot A=4,$ check whether $\frac{1-\tan ^{2} A}{1+\tan ^{2} A}=\cos ^{2} A-\sin ^{2} A$ or not.