$3$ અને $81$ વચ્ચે બે સંખ્યામાં ઉમેરો કે જેથી બનતી શ્રેણી સમગુણોત્તર હોય.
Let $G_{1}$ and $G_{2}$ be two numbers between $3$ and $81$ such that the series, $3, G_{1}, G_{2}, 81,$ forms a $G.P.$
Let $a$ be the first term and $r$ be the common ratio of the $G.P.$
$\therefore 81=(3)(r)^{3}$
$\Rightarrow r^{3}=27$
$\therefore r=3$ (Talking real roots only)
For $r=3$
$G_{1}=a r=(3)(3)=9$
$G_{2}=a r^{2}=(3)(3)^{2}=27$
Thus, the required two numbers are $9$ and $27$
જો $x > 1,\;y > 1,z > 1$ એ સમગુણોતર શ્નેણીમાં હોયતો $\frac{1}{{1 + {\rm{In}}\,x}},\;\frac{1}{{1 + {\rm{In}}\,y}},$ $\;\frac{1}{{1 + {\rm{In}}\,z}}$ એ _______ માં છે.
$7,77,777,7777, \ldots$ નાં $n$ પદોનો સરવાળો શોધો.
જો $\frac{{a + bx}}{{a - bx}} = \frac{{b + cx}}{{b - cx}} = \frac{{c + dx}}{{c - dx}},\left( {x \ne 0} \right)$ હોય તો $a$, $b$, $c$, $d$ એ ......... શ્રેણીમાં છે
સમગુણોત્તર શ્રેણી ધન પદો ધરાવે છે. દરેક પદ બરાબર તે પછીના બે પદોનો સરવાળો તો શ્રેણીનો સામાન્ય ગુણોત્તર કેટલો થાય ?
નીશ્ચાયક $\Delta \, = \,\left| {\begin{array}{*{20}{c}}
a&b&{a\alpha \, + \,b\,} \\
b&c&{b\alpha \, + \,c} \\
{a\alpha \, + \,b}&{b\alpha \, + \,c}&0
\end{array}} \right| \, = \,0\,$ થાય, જો $=................$