જો $b$ એ એવી અનંત સમગુણોત્તર શ્રેણીનું પહેલું પદ છે જેનો સરવાળો પાંચ થાય તો $b$ ની કિમત ક્યાં અંતરાલમાં આવે ?
$\left( { - \infty ,-10} \right)$
$\left( {10,\infty } \right)$
$\left( {0,10} \right)$
$\left( { - 10,0} \right)$
એક સમગુણોત્તર શ્રેણીનું ચોથું પદ બીજા પદના વર્ગ જેટલું છે અને પ્રથમ પદ $-3$ છે, તો તેનું $7$ મું પદ શોધો.
જો $\frac{{3 + 5 + 7 + ..........n\; }}{{5 + 8 + 11 + .........10\; }}$ $ = 7\,,\,\,$ તો $n$ ની કિમત મેળવો $?$
જો $f(\theta)=\frac{\sin ^4 \theta+3 \cos ^2 \theta}{\sin ^4 \theta+\cos ^2 \theta}, \theta \in \mathbb{R}$ નો વિસ્તાર $[\alpha, \beta]$ હોય, તો જેનું પ્રથમ પદ $64$ હોય અને સામાન્ય ગુણોત્તર $\frac{\alpha}{\beta}$ હોય તેવી અનંત સમગુણોત્તર શ્રેણીનો સરવાળો ............ છે.
$0<\mathrm{c}<\mathrm{b}<\mathrm{a}$ માટે , જો $(\mathrm{a}+\mathrm{b}-2 \mathrm{c}) \mathrm{x}^2+(\mathrm{b}+\mathrm{c}-2 \mathrm{a}) \mathrm{x}$ $+(c+a-2 b)=0$ અને $\alpha \neq 1$ એ એક બીજ હોય તો આપલે પૈકી બે વિધાન પૈકી
$(I)$ જો $\alpha \in(-1,0)$, હોય તો $\mathrm{b}$ એ $\mathrm{a}$ અને $\mathrm{c}$ નો સમગુણોતર મધ્યક બની શકે નહીં.
$(II)$ જો $\alpha \in(0,1)$ હોય તો $\mathrm{b}$ એ $a$ અને $c$ નો સમગુણોતર મધ્યક બની શકે.
$\sum\limits_{k = 1}^{11} {\left( {2 + {3^k}} \right)} $ ની કિંમત શોધો.