જો $\cos \left( {\frac{{\alpha - \beta }}{2}} \right) = 2\cos \left( {\frac{{\alpha + B}}{2}} \right)$, તો $\tan \frac{\alpha }{2}\tan \frac{\beta }{2}  = . . .$

  • A

    $\frac{1}{2}$

  • B

    $1\over3$

  • C

    $\frac{1}{4}$

  • D

    $\frac{1}{8}$

Similar Questions

જો $\cos \theta = \frac{1}{2}\left( {a + \frac{1}{a}} \right),$ તો $\cos 3\theta  = . . .$

ત્રિકોણ $ABC$ માટે ,$\sin A + \sin B + \sin C  = . . . .$

સાબિત કરો કે : $\frac{\sin x+\sin 3 x}{\cos x+\cos 3 x}=\tan 2 x$

જો $\sin \alpha = \frac{{336}}{{625}}$ અને $450^\circ < \alpha < 540^\circ ,$ તો $\sin \left( {\frac{\alpha }{4}} \right) = $

 $[1 - sin (3\pi - \alpha ) + cos (3\pi + \alpha )]$ $\left[ {1\,\, - \,\,\sin \,\left( {\frac{{3\,\pi }}{2}\,\, - \,\,\alpha } \right)\,\, + \,\,\cos \,\left( {\frac{{5\,\pi }}{2}\,\, - \,\,\alpha } \right)} \right]$ =