3.Trigonometrical Ratios, Functions and Identities
medium

જો $\cos \left( {\frac{{\alpha - \beta }}{2}} \right) = 2\cos \left( {\frac{{\alpha + B}}{2}} \right)$, તો $\tan \frac{\alpha }{2}\tan \frac{\beta }{2}  = . . .$

A

$\frac{1}{2}$

B

$1\over3$

C

$\frac{1}{4}$

D

$\frac{1}{8}$

Solution

(b) $\cos \left( {\frac{{\alpha – \beta }}{2}} \right) = 2\cos \left( {\frac{{\alpha + \beta }}{2}} \right)$

==> $\cos \frac{\alpha }{2}\cos \frac{\beta }{2} + \sin \frac{\alpha }{2}\sin \frac{\beta }{2} = 2\cos \frac{\alpha }{2}\cos \frac{\beta }{2} – 2\sin \frac{\alpha }{2}\sin \frac{\beta }{2}$

$ \Rightarrow 3\sin \frac{\alpha }{2}\sin \frac{\beta }{2} = \cos \frac{\alpha }{2}\cos \frac{\beta }{2}$

==> $\tan \frac{\alpha }{2}\tan \frac{\beta }{2} = \frac{1}{3}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.