3.Trigonometrical Ratios, Functions and Identities
medium

यदि $\alpha + \beta - \gamma = \pi ,$ तो ${\sin ^2}\alpha + {\sin ^2}\beta - {\sin ^2}\gamma  $ बराबर है

A

$2\,\sin \alpha \,\sin \beta \,\cos \gamma $

B

$ 2\,\cos \alpha \,\cos \beta \,\cos \gamma$

C

$2\,\sin \alpha \,\sin \beta \sin \gamma $

D

इनमें से कोई नहीं

(IIT-1980)

Solution

(a) यहाँ $\alpha  + \beta  – \gamma  = \pi .$

अब ${\sin ^2}\alpha  + {\sin ^2}\beta  – {\sin ^2}\gamma $

$ = {\sin ^2}\alpha  + \sin (\beta  – \gamma )\sin (\beta  + \gamma )$

$ = {\sin ^2}\alpha  + \sin (\pi  – \alpha )\sin (\beta  + \gamma )$

                                                            $(\because \alpha  + \beta  – \gamma  = \pi )$ 

$ = {\sin ^2}\alpha  + \sin \alpha \sin (\beta  + \gamma ) = \sin \alpha \{ \sin \alpha  + \sin (\beta  + \gamma )\} $

$ = \sin \alpha \{ \sin (\pi  – \overline {\beta  + \gamma )}  + \sin (\beta  + \gamma )\} $

$ = \sin \alpha \{  – \sin (\gamma  – \beta ) + \sin (\gamma  + \beta )\} $

$ = \sin \alpha \{ 2\sin \beta \cos \gamma \}  = 2\sin \alpha \sin \beta \cos \gamma $.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.