यदि $v$ चाल, $r = $ त्रिज्या तथा $g$ गुरुत्वीय त्वरण हो तो विमाहीन राशि होगी
${v^2}/rg$
${v^2}r/g$
${v^2}g/r$
${v^2}rg$
एक ट्यूब की लम्बाई $\ell$ तथा त्रिज्या $r$ है। इसमें टॉरपीन का तेल बहता है। ट्यूब के दोनों सिरों का दाबान्तर $p$ है तथा श्यानता गुणांक है
$\eta=\frac{p\left(r^{2}-x^{2}\right)}{4 v l}$
जहाँ ट्यूब के अक्ष से $x$ दूरी पर तेल का वेग $v$ है। $\eta$ की विमायें हैं
एक भौतिक राशि $\vec{S}$ को $\vec{S}=(\vec{E} \times \vec{B}) / \mu_0$ से परिभाषित किया जाता है, जहाँ $\vec{E}$ विद्युत क्षेत्र (electric field), $\vec{B}$ चुम्बकीय क्षेत्र (magnetic field) और $\mu_0$ निर्वात की चुबंकशीलता (permeability of free space) है। निम्न में से किसकी (किनकी) विमाएँ $\vec{S}$ की विमाओं के समान है?
$(A)$ $\frac{\text { Energy }}{\text { charge } \times \text { current }}$
$(B)$ $\frac{\text { Force }}{\text { Length } \times \text { Time }}$
$(C)$ $\frac{\text { Energy }}{\text { Volume }}$
$(D)$ $\frac{\text { Power }}{\text { Area }}$
सूत्र $X = 3Y{Z^2}$ में $X$ और $Z$ क्रमश: धारिता और चुम्बकीय क्षेत्र की विमायें हैं। $MKSQ$ पद्धति में $Y$ की विमायें हैं
किसी गैस का अवस्था समीकरण निम्न प्रकार दिया जाता है $\left( {P + \frac{a}{{{V^2}}}} \right) = \frac{{b\theta }}{l}$ जहाँ $P$ दाब, $V$ आयतन तथा $\theta $ परम ताप है तथा $a$ व $b$ नियतांक है। $a$ का विमीय सूत्र होगा
समीकरण, बल $ = \frac{X}{{{\rm{Density}}}}$ में भौतिक राशि $X$ की विमा है