$A$ और $B$ ऐसी घटनाएँ दी गई हैं जहाँ $P(A)=\frac{1}{2}, P(A \cup B)=\frac{3}{5}$ तथा $P ( B )=p$
$\bar{p}$ का मान ज्ञात कीजिए यदि घटनाएँ स्वतंत्र हैं।
When $A$ and $B$ are independent, $P(A \cap B)=P(A) P(B)=\frac{1}{2} p$
It is known that, $P(A \cup B)=P(A)+P(B)-P(A \cap B)$ $\Rightarrow \frac{3}{5}=\frac{1}{2}+p-\frac{1}{2} p$
$\Rightarrow \frac{3}{5}=\frac{1}{2}+\frac{p}{2}$
$\Rightarrow \frac{p}{2}=\frac{3}{5}-\frac{1}{2}=\frac{1}{10}$
$\Rightarrow p=\frac{2}{10}=\frac{1}{5}$
यदि $P(A \cup B) = 0.8$ तथा $P(A \cap B) = 0.3,$ तब $P(\bar A) + P(\bar B) = $
तीन घटनाओं $A$, $B$ तथा $C$ के लिए
$P(A$ अथवा $B$ में से केवल एक घटित हांती है $)$
$=P(B$ अथवा $C$ में से केवल एक घटित होती है $)$
$=P(C$ अथवा $A$ में से केबल एक घटित होती है
$=\frac{1}{4}$ तथा $P$ (सभी तीन घटनाएँ एक साथ घटित होती है)
$=\frac{1}{16}$ है,
तो प्रायिकता कि कम से कम एक घटना घटित हो, है:
घटनाएँ $E$ और $F$ इस प्रकार हैं कि $P ( E-$ नहीं और $F -$ नहीं $)=0.25,$ बताइए कि $E$ और $F$ परस्पर अपवर्जी हैं या नहीं ?
एक थैले में $5$ सफेद व $4$ काली गेंदें हैं तथा दूसरे थैले में $7$ सफेद व $9$ काली गेंदे हैैं। एक गेंद पहले थैले में से दूसरे थैले में रख दी जाती है और तब दूसरे थैले में से एक गेंद निकाली जाती है तो उसके सफेद होने की प्रायिकता है
$A$ व $B$ दो परस्पर अपवर्जी घटनायें इस प्रकार हैं कि $P(A) = 0.45$ व $P(B) = 0.35,$ तो $P (A$ या $B$) का मान है