Given the following two statements :
$\left( S _{1}\right):( q \vee p ) \rightarrow( p \leftrightarrow \sim q )$ is a tautology.
$\left( S _{2}\right): \sim q \wedge(\sim p \leftrightarrow q )$ is a fallacy.
Then
only $\left( S _{1}\right)$ is correct.
both $\left( S _{1}\right)$ and $\left( S _{2}\right)$ are correct.
both $\left( S _{1}\right)$ and $\left( S _{2}\right)$ are not correct.
only $\left( S _{2}\right)$ is correct.
If the truth value of the statement $p \to \left( { \sim q \vee r} \right)$ is false $(F)$, then the truth values of the statement $p, q, r$ are respectively
The negation of the compound proposition $p \vee (\sim p \vee q)$ is
The statement $B \Rightarrow((\sim A ) \vee B )$ is equivalent to
The number of choices of $\Delta \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\}$, such that $( p \Delta q ) \Rightarrow(( p \Delta \sim q ) \vee((\sim p ) \Delta q ))$ is a tautology, is
If $p, q, r$ are simple propositions, then $(p \wedge q) \wedge (q \wedge r)$ is true then