6.Permutation and Combination
medium

$0,1,3,5,7$ तथा $9$ अंकों से, $10$ से विभाजित होने वाली और बिना पुनरावृत्ति किए कितनी $6$ अंकीय संख्याएँ बनाई जा सकती हैं ?

A

$120$

B

$120$

C

$120$

D

$120$

Solution

A number is divisible by $10$ if its units digits is $0 .$

Therefore, $0$ is fixed at the units place.

Therefore, there will be as many ways as there are ways of filling $5$ vacant places $\boxed{}\,\boxed{}\,\boxed{}\,\boxed{}\,\boxed{}\,\boxed0\,$ in succession by the remaining $5$ digits (i.e., $1,3,5,7$ and $9$ ).

The $ 5$ vacant places can be filled in  $5 !$ Ways.

Hence, required number of $6 -$ digit numbers $=5 !=120$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.