यदि ${ }^{ n } C _{4},{ }^{ n } C _{5}$ तथा ${ }^{ n } C _{6}$ समान्तर श्रेणी में हो, तो $n$ का मान हो सकता है
$9$
$14$
$11$
$12$
यदि किसी समान्तर श्रेणी का $9$ वाँ पद $35$ एवं $19$ वाँ पद $75$ है, तो इसका $20$ वाँ पद होगा
अनुक्रम में प्रत्येक के प्रथम पाँच पद लिखिये, जिनका $n$ वाँ पद दिया गया है
$a_{n}=\frac{2 n-3}{6}$
माना $3,6,9,12, \ldots 78$ पदों तक तथा $5,9,13$, $17, \ldots 59$ पदों तक दो श्रेणीयाँ है। तब दोनों श्रेढ़ीयों के उभयनिप्ठ पदों का योगफल है
यदि $x_{1}, x_{2}, \ldots ., x_{n}$ तथा $\frac{1}{h_{1}}, \frac{1}{h_{2}}, \ldots ., \frac{1}{h_{n}}$ दो ऐसी समांतर श्रेढियां हैं कि $x_{3}=h_{2}=8$ तथा $x_{8}=h_{7}=20$ है, तो $x_{5} . h_{10}$ का मान है
यदि एक समान्तर श्रेणी के प्रथम $n$ पदों का योग उसके प्रथम $m$ पदों के योग के बराबर हो $(m \ne n)$, तो उसके $(m + n)$ पदों का योग होगा