यदि ${ }^{ n } C _{4},{ }^{ n } C _{5}$ तथा ${ }^{ n } C _{6}$ समान्तर श्रेणी में हो, तो $n$ का मान हो सकता है
$9$
$14$
$11$
$12$
यदि $x_{1}, x_{2}, \ldots ., x_{n}$ तथा $\frac{1}{h_{1}}, \frac{1}{h_{2}}, \ldots ., \frac{1}{h_{n}}$ दो ऐसी समांतर श्रेढियां हैं कि $x_{3}=h_{2}=8$ तथा $x_{8}=h_{7}=20$ है, तो $x_{5} . h_{10}$ का मान है
यदि $\log 2,\;\log ({2^n} - 1)$ तथा $\log ({2^n} + 3)$ समान्तर श्रेणी में हों, तो $n =$
किसी समान्तर श्रेणी का $7$ वाँ पद $40$ है, तो श्रेणी के प्रथम $13$ पदों का योग होगा
एक समांतर श्रेणी में $15$ पद हैं। इसका पहला पद $5$ है तथा योग $390$ है। मध्य पद है
यदि $a,\,b,\,c$ समांतर श्रेणी में हों, तो $(a + 2b - c)$ $(2b + c - a)$ $(c + a - b)$ =