Fibonacci अनुक्रम निम्नलिखित रूप में परिभाषित है
$1=a_{1}=a_{2}$ तथा $a_{n}=a_{n-1}+a_{n-2}, n \cdot>2$ तो
$\frac{a_{n+1}}{a_{n}}$ ज्ञात कीजिए, जबकि $n=1,2,3,4,5$
$1=a_{1}=a_{2}$
$a_{n}=a_{n-1}+a_{n-2}, n\,>\,2$
$\therefore a_{3}=a_{2}+a_{1}=1+1=2$
$a_{4}=a_{3}+a_{2}=2+1=3$
$a_{5}=a_{4}+a_{3}=3+2=5$
$a_{6}=a_{5}+a_{4}=5+3=8$
For $n=1, \frac{a_{n+1}}{a_{n}}=\frac{a_{2}}{a_{1}}=\frac{1}{1}=1$
For $n=2, \frac{a_{n+1}}{a_{n}}=\frac{a_{3}}{a_{2}}=\frac{2}{1}=2$
For $n=3, \frac{a_{n+1}}{a_{n}}=\frac{a_{4}}{a_{3}}=\frac{3}{2}$
For $n=4, \frac{a_{n+1}}{a_{n}}=\frac{a_{5}}{a_{4}}=\frac{5}{3}$
For $n=5, \frac{a_{n+1}}{a_{n}}=\frac{a_{6}}{a_{5}}=\frac{8}{5}$
माना एक समांतर श्रेढ़ी के प्रथम $\mathrm{n}$ पदों का योग $\mathrm{S}_{\mathrm{n}}$ है। यदि $\mathrm{S}_{20}=790$ तथा $\mathrm{S}_{10}=145$ है, तो $\mathrm{S}_{15}-\mathrm{S}_5$ बराबर है :
यदि किसी समान्तर श्रेणी के $10$ पदों का योगफल इसके $5$ पदों के योगफल से $4$ गुना है, तो प्रथम पद व सार्वअन्तर का अनुपात है
अनुक्रम, जिसका $n$ वाँ पद $\left( {\frac{n}{x}} \right) + y$ हो, तो श्रेणी के $r$ पदों का योगफल होगा
यदि किसी समान्तर अनुक्रम के $p$ वें, $q$ वें व $r$ वें पद क्रमश: $a , b,$ $c$ हों, तो $[a(q - r)$ + $b(r - p)$ $ + c(p - q)]$ का मान होगा
माना $a , b$ दो शून्येत्तर वास्तविक संख्याएँ हैं। एक समीकरण $x^2-8 a x+2 a=0$ के मूल $p$ तथा $r$ हैं और समीकरण $x ^2+12 bx +6 b =0$, के मूल $q$ तथा $s$ हैं, इस प्रकार कि $\frac{1}{ p }, \frac{1}{ q }, \frac{1}{ r }, \frac{1}{ s }$ A.P. में हैं,तो $a^{-1}-b^{-1}$ बराबर है $................$