8. Sequences and Series
medium

Fibonacci अनुक्रम निम्नलिखित रूप में परिभाषित है

$1=a_{1}=a_{2}$ तथा $a_{n}=a_{n-1}+a_{n-2}, n \cdot>2$ तो

$\frac{a_{n+1}}{a_{n}}$ ज्ञात कीजिए, जबकि $n=1,2,3,4,5$

A

$1,2,\frac{3}{2},\frac{5}{3},\frac{8}{5}$

B

$1,2,\frac{3}{2},\frac{5}{3},\frac{8}{5}$

C

$1,2,\frac{3}{2},\frac{5}{3},\frac{8}{5}$

D

$1,2,\frac{3}{2},\frac{5}{3},\frac{8}{5}$

Solution

$1=a_{1}=a_{2}$

$a_{n}=a_{n-1}+a_{n-2}, n\,>\,2$

$\therefore a_{3}=a_{2}+a_{1}=1+1=2$

$a_{4}=a_{3}+a_{2}=2+1=3$

$a_{5}=a_{4}+a_{3}=3+2=5$

$a_{6}=a_{5}+a_{4}=5+3=8$

For $n=1, \frac{a_{n+1}}{a_{n}}=\frac{a_{2}}{a_{1}}=\frac{1}{1}=1$

For $n=2, \frac{a_{n+1}}{a_{n}}=\frac{a_{3}}{a_{2}}=\frac{2}{1}=2$

For $n=3, \frac{a_{n+1}}{a_{n}}=\frac{a_{4}}{a_{3}}=\frac{3}{2}$

For $n=4, \frac{a_{n+1}}{a_{n}}=\frac{a_{5}}{a_{4}}=\frac{5}{3}$

For $n=5, \frac{a_{n+1}}{a_{n}}=\frac{a_{6}}{a_{5}}=\frac{8}{5}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.