4-2.Quadratic Equations and Inequations
normal

જો $\alpha , \beta $ એ સમીકરણ $x^2 - 2x + 4 = 0$ ના બીજો હોય તો $\alpha ^n +\beta ^n$ ની કિમત મેળવો 

A

${2^n}\cos \left( {\frac{{n\pi }}{3}} \right)$

B

${2^{n + 1}}\cos \left( {\frac{{n\pi }}{3}} \right)$

C

${2^n}\sin \left( {\frac{{n\pi }}{3}} \right)$

D

${2^{n + 1}}\sin \left( {\frac{{n\pi }}{3}} \right)$

Solution

$\alpha+\beta=2$

$\alpha . \beta=4$

by solving, 

$\alpha=2[\cos \pi / 3+i \sin \pi / 3]$

$\beta=2[\cos \pi / 3-i \sin \pi / 3]$

$\mathrm{SO},$

$2^{n}\left[\cos \frac{n \pi}{3}+i \sin \frac{n \pi}{3}\right]+2^{n}\left[\cos \frac{n \pi}{3}-i \sin \frac{n \pi}{3}\right]$

$=2^{n}\left[\cos \frac{n \pi}{3}\right]$

$=2^{n+1} \cdot \cos \frac{n \pi}{3}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.