If $\alpha , \beta $ are the roots of the equation $x^2 - 2x + 4 = 0$ , then the value of $\alpha ^n +\beta ^n$ is
${2^n}\cos \left( {\frac{{n\pi }}{3}} \right)$
${2^{n + 1}}\cos \left( {\frac{{n\pi }}{3}} \right)$
${2^n}\sin \left( {\frac{{n\pi }}{3}} \right)$
${2^{n + 1}}\sin \left( {\frac{{n\pi }}{3}} \right)$
If $\alpha $, $\beta$, $\gamma$ are roots of ${x^3} - 2{x^2} + 3x - 2 = 0$ , then the value of$\left( {\frac{{\alpha \beta }}{{\alpha + \beta }} + \frac{{\alpha \gamma }}{{\alpha + \gamma }} + \frac{{\beta \gamma }}{{\beta + \gamma }}} \right)$ is
Let $a, b, c$ be the length of three sides of a triangle satisfying the condition $\left(a^2+b^2\right) x^2-2 b(a+c)$. $x+\left(b^2+c^2\right)=0$. If the set of all possible values of $x$ is the interval $(\alpha, \beta)$, then $12\left(\alpha^2+\beta^2\right)$ is equal to............................
The sum of all the roots of the equation $\left|x^2-8 x+15\right|-2 x+7=0$ is:
In the equation ${x^3} + 3Hx + G = 0$, if $G$ and $H$ are real and ${G^2} + 4{H^3} > 0,$ then the roots are
If for a posiive integer $n$ , the quadratic equation, $x\left( {x + 1} \right) + \left( {x + 1} \right)\left( {x + 2} \right) + .\;.\;.\; + \left( {x + \overline {n - 1} } \right)\left( {x + n} \right) = 10n$ has two consecutive integral solutions, then $n$ is equal to: