The sum of all the elements in the set $\{\mathrm{n} \in\{1,2, \ldots \ldots ., 100\} \mid$ $H.C.F.$ of $n$ and $2040$ is $1\,\}$ is equal to $.....$
$1251$
$1300$
$1456$
$1371$
Let the sequence $a_{n}$ be defined as follows:
${a_1} = 1,{a_n} = {a_{n - 1}} + 2$ for $n\, \ge \,2$
Find first five terms and write corresponding series.
Four numbers are in arithmetic progression. The sum of first and last term is $8$ and the product of both middle terms is $15$. The least number of the series is
If $n$ arithmetic means are inserted between a and $100$ such that the ratio of the first mean to the last mean is $1: 7$ and $a+n=33$, then the value of $n$ is
If $a_1, a_2, a_3, …….$ are in $A.P.$ such that $a_1 + a_7 + a_{16} = 40$, then the sum of the first $15$ terms of this $A.P.$ is
The sides of a triangle are distinct positive integers in an arithmetic progression. If the smallest side is $10$, the number of such triangles is