Trigonometrical Equations
hard

यदि $S=\left\{x \in[0,2 \pi]:\left|\begin{array}{rrr}0 & \cos x & -\sin x \\ \sin x & 0 & \cos x \\ \cos x & \sin x & 0\end{array}\right|=0\right\}$ है, तो $\sum_{x \in S} \tan \left(\frac{\pi}{3}+x\right)$ बराबर है 

A

$4 + 2\sqrt 3 $

B

$-2 + \sqrt 3 $

C

$-2 - \sqrt 3 $

D

$-4 - 2\sqrt 3 $

(JEE MAIN-2017)

Solution

since the given determinant is equal to zera

$\Rightarrow 0(0-\cos x \sin x)-\cos x\left(0-\cos ^{2} x\right)$

$-\sin x\left(\sin ^{2} x-0\right)=0$

$\Rightarrow \cos ^{3} x-\sin ^{3} x=0$

$\Rightarrow \tan ^{3}=1 \Rightarrow \tan x=1$

$\therefore \quad \sum_{x \in s} \tan \left(\frac{\pi}{3}+x\right)=\sum_{x \in s} \frac{\tan \pi / 3+\tan x}{1-\tan \pi / 3 \cdot \tan x}$

${ = \sum\limits_{x\, \in \,s} {\frac{{\sqrt 3 \, + \,1}}{{1\, – \,\sqrt 3 }}\, = \sum\limits_{x\, \in \,s} {\frac{{\sqrt 3 \, + \,1}}{{1\, – \,\sqrt 3 }}\, \times \,\frac{{1 + \sqrt 3 }}{{1 + \sqrt 3 }}} \,} }$

${ \Rightarrow \sum\limits_{x \in s} {\frac{{1 + 3 + 2\sqrt 3 }}{{ – 2}}}  =  – 2 – \sqrt 3 }$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.