If $x$ is a solution of the equation, $\sqrt {2x + 1}  - \sqrt {2x - 1}  = 1, \left( {x \ge \frac{1}{2}} \right)$ , then $\sqrt {4{x^2} - 1} $ is equal to 

  • [JEE MAIN 2016]
  • A

    $\frac{3}{4}$

  • B

    $\frac{1}{2}$

  • C

    $2\sqrt 2 $

  • D

    $2$

Similar Questions

The two roots of an equation ${x^3} - 9{x^2} + 14x + 24 = 0$ are in the ratio $3 : 2$. The roots will be

Let $\alpha, \beta$ be two roots of the equation $x^{2}+(20)^{\frac{1}{4}} x+(5)^{\frac{1}{2}}=0$. Then $\alpha^{8}+\beta^{8}$ is equal to:

  • [JEE MAIN 2021]

Consider the quadratic equation $n x^2+7 \sqrt{n x+n}=0$ where $n$ is a positive integer. Which of the following statements are necessarily correct?

$I$. For any $n$, the roots are distinct.

$II$. There are infinitely many values of $n$ for which both roots are real.

$III$. The product of the roots is necessarily an integer.

  • [KVPY 2016]

If $\alpha, \beta $ and $\gamma$ are the roots of the equation $2{x^3} - 3{x^2} + 6x + 1 = 0$, then ${\alpha ^2} + {\beta ^2} + {\gamma ^2}$ is equal to

Suppose $a, b, c$ are positive integers such that $2^a+4^b+8^c=328$. Then, $\frac{a+2 b+3 c}{a b c}$ is equal to

  • [KVPY 2015]