यदि समीकरण $\sqrt{2 x+1}-\sqrt{2 x-1}=1,\left(x \geqslant \frac{1}{2}\right)$, का $x$ एक हल है, तो $\sqrt{4 x^{2}-1}$ बराबर है
$\frac{3}{4}$
$\frac{1}{2}$
$2\sqrt 2 $
$2$
मान लें कि $x, y, z$ धनात्मक संख्याएँ इस प्रकार हैं कि $HCF (x, y, z)=1$ तथा $x^2+y^2=2 z^2$. तब निम्नलिखित में से कौन सा कथन सत्य है ?
$I$. $4,{ }^x$ को विभाजित करता है या $4, y$ को विभाजित करता है।
$II$. $3,{ }^{x+y}$ को विभाजित करता है या $3, x-y$ को विभाजित करता है।
$III$. $5,2\left(x^2-y^2\right)$ को विभाजित करता है।
समीकरण $\mathrm{x}\left(\mathrm{x}^2+3|\mathrm{x}|+5|\mathrm{x}-1|+6|\mathrm{x}-2|\right)=0$ के वास्तविक हलों की संख्या है ...........
यदि $x$ धनात्मक है तो $5 + 4x - 4{x^2}$ का अधिकतम मान होगा
समीकरण $x ^7-7 x -2=0$ के विभिन्न वास्तविक मूलों की संख्या होगी
समीकरण ${e^x} - x - 1 = 0$ के होंगे