यदि समीकरण $\sqrt{2 x+1}-\sqrt{2 x-1}=1,\left(x \geqslant \frac{1}{2}\right)$, का $x$ एक हल है, तो $\sqrt{4 x^{2}-1}$ बराबर है
$\frac{3}{4}$
$\frac{1}{2}$
$2\sqrt 2 $
$2$
$k ( k \neq 0)$ के सभी पूर्णांक मानों, जिनके लिए $x$ में समीकरण $\frac{2}{ x -1}-\frac{1}{ x -2}=\frac{2}{ k }$ का कोई वास्तविक मूल नहीं है, का योग है .......... |
समीकरण $\mathrm{x}^2-4 \mathrm{x}+[\mathrm{x}]+3=\mathrm{x}[\mathrm{x}]$, जहाँ $[\mathrm{x}]$ महत्तम पूर्णांक फलन है,
माना $\alpha$ तथा $\beta$ समीकरण $x^{2}-x-1=0$ के मूल हैं। यदि $p _{ k }=(\alpha)^{ k }+(\beta)^{ k }, k \geq 1$, तो निम्न में से कौन सा एक कथन सत्य नहीं है ?
यदि $\alpha ,\beta $ समीकरण ${x^2} - ax + b = 0$ के मूल हों तथा यदि ${\alpha ^n} + {\beta ^n} = {V_n}$ हों, तो
माना कि $x ^2- x -1=0$ के मूल (roots) $\alpha$ और $\beta$ हैं, जहाँ $\alpha>\beta$ है। सभी धनात्मक पूर्णांकों $n$ के लिए निम्न को परिभाषित किया गया है
$a_n=\frac{\alpha^n-\beta^n}{\alpha-\beta}, n \geq 1$
$b_1=1 \text { and } b_n=a_{n-1}+a_{n+1}, n \geq 2.$
तब निम्न में से कौनसा (से) विकल्प सही है (हैं) ?
$(1)$ प्रत्येक $n \geq 1$ के लिए, $a _1+ a _2+ a _3+\ldots . .+ a _{ n }= a _{ n +2}-1$
$(2)$ $\sum_{ n =1}^{\infty} \frac{ a _{ n }}{10^{ n }}=\frac{10}{89}$
$(3)$ $\sum_{ n =1}^{\infty} \frac{ b _{ n }}{10^{ n }}=\frac{8}{89}$
$(4)$ प्रत्येक $n \geq 1$ के लिए, $b _{ n }=\alpha^{ n }+\beta^{ n }$