- Home
- Standard 11
- Mathematics
The number of integers $n$ for which $3 x^3-25 x+n=0$ has three real roots is
$1$
$25$
$55$
infinite
Solution
(c)
We have, $3 x^3-25 x+n=0$
Let $f(x)=3 x^3-25 x+n$
$f^{\prime}(x) =9 x^2-25$
$\text { Put } f^{\prime}(x) =0$
$9 x^2-25 =0$
$x =\pm \frac{5}{3} \Rightarrow x_1=\frac{-5}{3}, x_2=\frac{5}{3}$
$f(x)$ has three real roots.
$\therefore\left(x_1\right) f\left(x_2\right) < 0$
$\therefore\left(3\left(\frac{-5}{3}\right)^3-25 \left(\frac{-5}{3}\right)+n\right)$
$\left(3\left(\frac{5}{3}\right)^3-25\left(\frac{5}{3}\right)+n\right) < 0$
$\left(\frac{-125}{9}+\frac{125}{3}+n\right)\left(\frac{125}{9}-\frac{125}{3}+n\right) < 0$
$\left(n+\frac{250}{9}\right)\left(n-\frac{250}{9}\right) < 0$
$n \in\left(\frac{-250}{9}, \frac{250}{9}\right]$
Hence, $n \in I$
$\therefore$ Total integer is $55$