The number of integers $n$ for which $3 x^3-25 x+n=0$ has three real roots is
$1$
$25$
$55$
infinite
If $x$ is real and satisfies $x + 2 > \sqrt {x + 4} ,$ then
The set of values of $x$ which satisfy $5x + 2 < 3x + 8$ and $\frac{{x + 2}}{{x - 1}} < 4,$ is
Consider the equation ${x^2} + \alpha x + \beta = 0$ having roots $\alpha ,\beta $ such that $\alpha \ne \beta $ .Also consider the inequality $\left| {\left| {y - \beta } \right| - \alpha } \right| < \alpha $ ,then
Let $f(x)={{x}^{2}}-x+k-2,k\in R$ then the complete set of values of $k$ for which $y=\left| f\left( \left| x \right| \right) \right|$ is non-derivable at $5$ distinict points is
Let $p(x)=x^2-5 x+a$ and $q(x)=x^2-3 x+b$, where $a$ and $b$ are positive integers. Suppose HCF $(p(x), q(x))=x-1$ and $k(x)=1 cm (p(x), q(x))$ If the coefficient of the highest degree term of $k(x)$ is 1 , then sum of the roots of $(x-1)+k(x)$ is