यदि द्विघाती समीकरण, $x^{2}+x \sin \theta-2 \sin \theta=0, \theta \in\left(0, \frac{\pi}{2}\right) \text {, }$ के मूल $\alpha$ तथा $\beta$ हैं, तो $\frac{\alpha^{12}+\beta^{12}}{\left(\alpha^{-12}+\beta^{-12}\right)(\alpha-\beta)^{24}}$ बराबर हैं
$\frac{{{2^{12}}}}{{{{\left( {\sin \,\theta + 8} \right)}^{12}}}}$
$\frac{{{2^{12}}}}{{{{\left( {\sin \,\theta - 4} \right)}^{12}}}}$
$\frac{{{2^{12}}}}{{{{\left( {\sin \,\theta - 8} \right)}^{6}}}}$
$\frac{{{2^{6}}}}{{{{\left( {\sin \,\theta + 8} \right)}^{12}}}}$
समीकरण ${(3|x| - 3)^2} = |x| + 7$ के हल जो कि फलन $y = \sqrt {x(x - 3)} $ के प्रान्त में हैं, होंगे
यदि किसी धनपूर्णांक $n$ के लिए, द्विघाती समीकरण
$x(x+1)+(x+1)(x+2)+\ldots+(x+\overline{n-1})(x+n)=10 n$
के दो क्रमिक पूर्णांकीय हल है, तो $n$ बराबर है :
समीकरण $|\sqrt{ x }-2|+\sqrt{ x }(\sqrt{ x }-4)+2=0,( x >0)$ के हलों का योग बराबर है -
समीकरण $x^{2}+|2 x-3|-4=0$, के मूलों का योगफल है
यदि $\alpha ,\beta $ समीकरण ${x^2} - ax + b = 0$ के मूल हों तथा यदि ${\alpha ^n} + {\beta ^n} = {V_n}$ हों, तो