माना कि $f(x)=x^4+a x^3+b x^2+c$ वास्तविक गुणांकों (real coefficients ) वाला एक ऐसा बहुपद (polynomial) है कि $f(1)=-9$ है। मान लीजिये कि $i \sqrt{3}$, समीकरण $4 x^3+3 a x^2+2 b x=0$ का एक मूल है, जहां $i=\sqrt{-1}$ है। यदि $\alpha_1, \alpha_2, \alpha_3$, और $\alpha_4$, समीकरण $f(x)=0$ के सभी मूल हैं, तब $\left|\alpha_1\right|^2+\left|\alpha_2\right|^2+\left|\alpha_3\right|^2+\left|\alpha_4\right|^2$ का मान. . . . . है।

  • [IIT 2024]
  • A

    $10$

  • B

    $20$

  • C

    $30$

  • D

    $40$

Similar Questions

समीकरण

$x+1-2 \log _{2}\left(3+2^{x}\right)+2 \log _{4}\left(10-2^{-x}\right)=0$

के मूलों का योग है

  • [JEE MAIN 2021]

यदि $x$ वास्तविक है तथा $k = \frac{{{x^2} - x + 1}}{{{x^2} + x + 1}}$ हो, तब

समीकरण ${x^3} + 3Hx + G = 0$ में यदि $G$ तथा $H$ वास्तविक हों और ${G^2} + 4{H^3} > 0,$ तब मूल होंगे

माना कि $x ^2- x -1=0$ के मूल (roots) $\alpha$ और $\beta$ हैं, जहाँ $\alpha>\beta$ है। सभी धनात्मक पूर्णांकों $n$ के लिए निम्न को परिभाषित किया गया है

$a_n=\frac{\alpha^n-\beta^n}{\alpha-\beta}, n \geq 1$

$b_1=1 \text { and } b_n=a_{n-1}+a_{n+1}, n \geq 2.$

तब निम्न में से कौनसा (से) विकल्प सही है (हैं) ?

$(1)$ प्रत्येक $n \geq 1$ के लिए, $a _1+ a _2+ a _3+\ldots . .+ a _{ n }= a _{ n +2}-1$

$(2)$ $\sum_{ n =1}^{\infty} \frac{ a _{ n }}{10^{ n }}=\frac{10}{89}$

$(3)$ $\sum_{ n =1}^{\infty} \frac{ b _{ n }}{10^{ n }}=\frac{8}{89}$

$(4)$ प्रत्येक $n \geq 1$ के लिए, $b _{ n }=\alpha^{ n }+\beta^{ n }$

  • [IIT 2019]

यदि $|x - 2| + |x - 3| = 7$, तब $x =$